Dispersion behavior of ultra fine BaTiO3 particles in the aqueous solution of ammonium citrate (NH4-CA) or citric acid lanthanum chelate (NH4-La-CA) was investigated. The dispersion property was characterized with...Dispersion behavior of ultra fine BaTiO3 particles in the aqueous solution of ammonium citrate (NH4-CA) or citric acid lanthanum chelate (NH4-La-CA) was investigated. The dispersion property was characterized with sedimentation value. It is easier to obtain well dispersed slurry with NH4La-CA than NH4-CA. In an attempt to better understand the role of citric acid radical, simulation of the dispersant adsorption on BaTiO3 particle was performed with universal force field (UFF). It is demonstrated that the interaction between citric acid radical and BaTiO3 particle surface is a weak chemical adsorption. Trivalent citric acid radical is adsorbed on BaTiO3 particle surface with maximal adsorption energy. And, larger molecules of NH4-La-CA formed by adding La^3+ lead to better dispersion property than NHn-CA.展开更多
基金Project(020951) supported by Natural Science Fundation of Guangdong Province, China
文摘Dispersion behavior of ultra fine BaTiO3 particles in the aqueous solution of ammonium citrate (NH4-CA) or citric acid lanthanum chelate (NH4-La-CA) was investigated. The dispersion property was characterized with sedimentation value. It is easier to obtain well dispersed slurry with NH4La-CA than NH4-CA. In an attempt to better understand the role of citric acid radical, simulation of the dispersant adsorption on BaTiO3 particle was performed with universal force field (UFF). It is demonstrated that the interaction between citric acid radical and BaTiO3 particle surface is a weak chemical adsorption. Trivalent citric acid radical is adsorbed on BaTiO3 particle surface with maximal adsorption energy. And, larger molecules of NH4-La-CA formed by adding La^3+ lead to better dispersion property than NHn-CA.