To prepare the adherent and high active platinum black plated titanium electrode,ultrasonic agitation technology was adopted during the electrodeposition.Ultrasonic agitation technology enhanced the activity of electr...To prepare the adherent and high active platinum black plated titanium electrode,ultrasonic agitation technology was adopted during the electrodeposition.Ultrasonic agitation technology enhanced the activity of electrode,improved the cohesion between coatings and substrate,changed the microscopical surface shape and increased the real surface area of electrode.The enhancement of the activity of electrode was in large due to the electrode rugosity.展开更多
To recover titanium from tionite, a new process consisting of NaOH hydrothermal conversion, water washing, and H2SO4 leaching for TiO2 preparation was developed. The experimental results show that under the optimum ...To recover titanium from tionite, a new process consisting of NaOH hydrothermal conversion, water washing, and H2SO4 leaching for TiO2 preparation was developed. The experimental results show that under the optimum hydrothermal conversion conditions, i.e., 50% NaOH (mass fraction) solution, NaOH/tionite mass ratio of 4:1, reaction temperature of 240 ℃reaction time of 1 h and oxygen partial pressure of 0.25 MPa, the titanium was mainly converted into Na2TiO3, and the conversion was 97.2%. The unwanted product Na2TiSiO5 remained stable in water washing, and its formation was prevented by improving NaOH concentration. In water washing process, about 97.6% of Na+ could be recycled by washing the hydrothermal product. The NaOH solutions could be reused after concentration. 96.7% of titanium in the washed product was easily leached in H2SO4 solution at low temperatures, forming titanyl sulfate solution to further prepare TiO2.展开更多
Black TiO2(B)/anatase bicrystalline TiO2-x nanofibers were synthesized from a porous titanate derivative by calcination in H2, and were characterized using field-emission scanning electron microscopy, Raman spectros...Black TiO2(B)/anatase bicrystalline TiO2-x nanofibers were synthesized from a porous titanate derivative by calcination in H2, and were characterized using field-emission scanning electron microscopy, Raman spectroscopy, N2 adsorption-desorption analysis, X-ray photoelectron spectroscopy, thermogravimetric analysis, ultraviolet-visible diffuse reflection spectroscopy and photoluminescence measurements. Characterization results showed that no Ti3+ was present on the surface of black bicrystalline TiO2-x and oxygen vacancies were distributed in the bulk of both TiO2(B) and anatase phases. The O/Ti atom stoichiometric ratio of black bicrystalline TiO2-x was estimated to be 1.97 from the difference of mass loss between black bicrystalline TiO2-x and white bicrystalline TiO2 without oxygen vacancies. The photocatalytic activity of black bicrystalline TiO2-x was 4.2 times higher than that of white bicrystalline TiO2 and 10.5 times higher than that of anatase TiOz. The high photocatalytic activity of black bicrystalline TiO2-x was attributed to its effective separation of electrons and holes, which may be related to the effects of both bicrystalline structure and oxygen vacancies. Black bicrystalline TiO2-x also exhibited good photocatalytic activity after recycling ten times. The black bicrystalline TiO2-x nanofibers show potential for use in environmental and energy applications.展开更多
文摘To prepare the adherent and high active platinum black plated titanium electrode,ultrasonic agitation technology was adopted during the electrodeposition.Ultrasonic agitation technology enhanced the activity of electrode,improved the cohesion between coatings and substrate,changed the microscopical surface shape and increased the real surface area of electrode.The enhancement of the activity of electrode was in large due to the electrode rugosity.
基金Project(51090380)supported by the National Natural Science Foundation of ChinaProjects(2013CB632604,2013CB632601)supported by the National Basic Research Program of China+2 种基金Project(51125018)supported by the National Science Foundation for Distinguished Young Scholars of ChinaProject(KGZD-EW-201-2)supported by the Key Research Program of the Chinese Academy of SciencesProjects(51374191,51402303)supported by the Natural Science Foundation for the Youth,China
文摘To recover titanium from tionite, a new process consisting of NaOH hydrothermal conversion, water washing, and H2SO4 leaching for TiO2 preparation was developed. The experimental results show that under the optimum hydrothermal conversion conditions, i.e., 50% NaOH (mass fraction) solution, NaOH/tionite mass ratio of 4:1, reaction temperature of 240 ℃reaction time of 1 h and oxygen partial pressure of 0.25 MPa, the titanium was mainly converted into Na2TiO3, and the conversion was 97.2%. The unwanted product Na2TiSiO5 remained stable in water washing, and its formation was prevented by improving NaOH concentration. In water washing process, about 97.6% of Na+ could be recycled by washing the hydrothermal product. The NaOH solutions could be reused after concentration. 96.7% of titanium in the washed product was easily leached in H2SO4 solution at low temperatures, forming titanyl sulfate solution to further prepare TiO2.
基金supported by the National Natural Science Foundation of China(21406118,91434109,91334202)the Highly Educated Talent Foundation of Nanjing Forestry University(GXL2014036)+2 种基金the Doctor Program of Jiangsu ProvinceDistinguished Experts Program of Science and Technology Vice-manager(Enterprise Innovation Job)the Priority Academic Program Development of Jiangsu Higher Education Institutions~~
文摘Black TiO2(B)/anatase bicrystalline TiO2-x nanofibers were synthesized from a porous titanate derivative by calcination in H2, and were characterized using field-emission scanning electron microscopy, Raman spectroscopy, N2 adsorption-desorption analysis, X-ray photoelectron spectroscopy, thermogravimetric analysis, ultraviolet-visible diffuse reflection spectroscopy and photoluminescence measurements. Characterization results showed that no Ti3+ was present on the surface of black bicrystalline TiO2-x and oxygen vacancies were distributed in the bulk of both TiO2(B) and anatase phases. The O/Ti atom stoichiometric ratio of black bicrystalline TiO2-x was estimated to be 1.97 from the difference of mass loss between black bicrystalline TiO2-x and white bicrystalline TiO2 without oxygen vacancies. The photocatalytic activity of black bicrystalline TiO2-x was 4.2 times higher than that of white bicrystalline TiO2 and 10.5 times higher than that of anatase TiOz. The high photocatalytic activity of black bicrystalline TiO2-x was attributed to its effective separation of electrons and holes, which may be related to the effects of both bicrystalline structure and oxygen vacancies. Black bicrystalline TiO2-x also exhibited good photocatalytic activity after recycling ten times. The black bicrystalline TiO2-x nanofibers show potential for use in environmental and energy applications.