First the research is conducted on the design of the two-phase sinusoidal power clock generator in this paper. Then the design of the new adiabatic logic circuit adopting the two-phase sinusoidal power clocks--Clocked...First the research is conducted on the design of the two-phase sinusoidal power clock generator in this paper. Then the design of the new adiabatic logic circuit adopting the two-phase sinusoidal power clocks--Clocked Transmission Gate Adiabatic Logic (CTGAL) circuit is presented. This circuit makes use of the clocked transmission gates to sample the input signals, then the output loads are charged and discharged in a fully adiabatic manner by using bootstrapped N-Channel Metal Oxide Semiconductor (NMOS) and Complementary Metal Oxide Semiconductor (CMOS) latch structure. Finally, with the parameters of Taiwan Semiconductor Manufacturing Company (TSMC) 0.25um CMOS device, the transient energy consumption of CTGAL, Bootstrap Charge-Recovery Logic (BCRL) and Pass-transistor Adiabatic Logic (PAL) including their clock generators is simulated. The simulation result indicates that CTGAL circuit has the characteristic of remarkably low energy consumption.展开更多
We propose a new design scheme for a Booth encoder based on clocked transmission gate adiabatic logic(CTGAL). In the new design the structural complexity of the Booth encoder is reduced while the speed of the multipli...We propose a new design scheme for a Booth encoder based on clocked transmission gate adiabatic logic(CTGAL). In the new design the structural complexity of the Booth encoder is reduced while the speed of the multiplier is improved. The adiabatic two's complement multiplier-accumulator(MAC) is furthermore a design based on the CTGAL. The computer simulation results indicate that the designed circuit has the correct logic function and remarkably less energy consumption compared to that of the MAC based on complementary metal oxide semiconductor(CMOS) logic.展开更多
基金Supported by the National Natural Science Foundation of China (No. 60273093)the Natural Science Foundation of Zhejinag Province(No. Y104135) the Student Sci-entific Research Foundation of Ningbo university (No.C38).
文摘First the research is conducted on the design of the two-phase sinusoidal power clock generator in this paper. Then the design of the new adiabatic logic circuit adopting the two-phase sinusoidal power clocks--Clocked Transmission Gate Adiabatic Logic (CTGAL) circuit is presented. This circuit makes use of the clocked transmission gates to sample the input signals, then the output loads are charged and discharged in a fully adiabatic manner by using bootstrapped N-Channel Metal Oxide Semiconductor (NMOS) and Complementary Metal Oxide Semiconductor (CMOS) latch structure. Finally, with the parameters of Taiwan Semiconductor Manufacturing Company (TSMC) 0.25um CMOS device, the transient energy consumption of CTGAL, Bootstrap Charge-Recovery Logic (BCRL) and Pass-transistor Adiabatic Logic (PAL) including their clock generators is simulated. The simulation result indicates that CTGAL circuit has the characteristic of remarkably low energy consumption.
基金supported by the National Natural Science Foundation of China (No. 60776022)the Science and Technology Fund of Zhejiang Province (No. 2008C21166)+3 种基金the Key Scientific Research Fund of the Department of Education of Zhejiang Province (No. 20061666)the Professor Fund (No. JSL2007001)the Scientific Research Fund (No. XK0610030)the K. C. Wong Magna Fund in Ningbo University, China
文摘We propose a new design scheme for a Booth encoder based on clocked transmission gate adiabatic logic(CTGAL). In the new design the structural complexity of the Booth encoder is reduced while the speed of the multiplier is improved. The adiabatic two's complement multiplier-accumulator(MAC) is furthermore a design based on the CTGAL. The computer simulation results indicate that the designed circuit has the correct logic function and remarkably less energy consumption compared to that of the MAC based on complementary metal oxide semiconductor(CMOS) logic.