Fertile fuel, such as thorium or depleted uranium, can be bred into fissile fuel and burnt in a breed-andburn(B&B) reactor. Modeling a full core with fertile fuel can assess the performance of a B&B reactor wi...Fertile fuel, such as thorium or depleted uranium, can be bred into fissile fuel and burnt in a breed-andburn(B&B) reactor. Modeling a full core with fertile fuel can assess the performance of a B&B reactor with exact quantitative estimates, but costs too much computation time. For simplicity, performing the recently developed neutron balance method with a zero-dimensional(0-D)model can also provide a reasonable result. Based on the0-D model, the feasibility of the B&B mode for thorium fuel in a fast reactor cooled by sodium was investigated by considering the(n, 2n) and(n, 3n) reaction rates of fuel and coolant in this work, and compared with that of depleted uranium fuel. Afterward, the performance of the same thorium-based fuel core, but cooled by helium, lead-bismuth, and FLi Be, respectively, is discussed. It is found that the(n, 2n) and(n, 3n) reactions should not be neglected for the neutron balance calculation for thorium-based fuel to sustain the B&B mode of operation.展开更多
The carboxyl terminal of sodium oleate has a stronger polarity than that of oleic acid;this terminal is more likely to be dipole polarized and ionically conductive in a microwave field.Sodium oleate was used as the mo...The carboxyl terminal of sodium oleate has a stronger polarity than that of oleic acid;this terminal is more likely to be dipole polarized and ionically conductive in a microwave field.Sodium oleate was used as the model compound to study the decarboxylation of oleic acid leading to hydrocarbon formation via microwave-assisted pyrolysis technology.The pyrolysis gas,liquid,and solid products were precisely analyzed to deduce the mechanism for decarboxylation of sodium oleate.Microwave energy was able to selectively heat the carboxyl terminal of sodium oleate.During decarboxylation,the double bond in the long hydrocarbon chain formed a p-πconjugated system with the carbanion intermediate.The resulting p-πconjugated system was more stable and beneficial to the pyrolysis reaction(decarboxylation,terminal allylation,isomerization,and aromatization).The physical properties of pyrolysis liquid were generally similar to those of diesel fuel,thereby demonstrating the possible use of microwaves for controlling the decarboxylation of sodium oleate in order to manufacture renewable hydrocarbon fuels.展开更多
The purpose of the present study is to develop a methodology to evaluate fuel discharge through the CRGT (control-rod guide tube) during CDAs (core-disruptive accidents) of SFRs (sodium-cooled fast reactors), si...The purpose of the present study is to develop a methodology to evaluate fuel discharge through the CRGT (control-rod guide tube) during CDAs (core-disruptive accidents) of SFRs (sodium-cooled fast reactors), since fuel discharge will decrease the core reactivity and CRGTs have a potential to provide an effective discharge path. Fuel discharge contains multi-component fluid dynamics with phase changes, and, in the present study, the SFR safety analysis code SIMMER (Sn, implicit, multifield, multicomponent, Eulerian recriticality) was utilized as a technical basis. First, dominant phenomena affecting fuel discharge through the CRGT are identified based on parametric calculations by the SIMMER code. Next, validations on the code models closely relating to these phenomena were carried out based on experimental data. It was shown that the SIMMER code with some model modifications could reproduce the experimental results appropriately. Through the present study, the evaluation methodology for the molten-fuel discharge through the CRGT was successfully developed.展开更多
基金supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)
文摘Fertile fuel, such as thorium or depleted uranium, can be bred into fissile fuel and burnt in a breed-andburn(B&B) reactor. Modeling a full core with fertile fuel can assess the performance of a B&B reactor with exact quantitative estimates, but costs too much computation time. For simplicity, performing the recently developed neutron balance method with a zero-dimensional(0-D)model can also provide a reasonable result. Based on the0-D model, the feasibility of the B&B mode for thorium fuel in a fast reactor cooled by sodium was investigated by considering the(n, 2n) and(n, 3n) reaction rates of fuel and coolant in this work, and compared with that of depleted uranium fuel. Afterward, the performance of the same thorium-based fuel core, but cooled by helium, lead-bismuth, and FLi Be, respectively, is discussed. It is found that the(n, 2n) and(n, 3n) reactions should not be neglected for the neutron balance calculation for thorium-based fuel to sustain the B&B mode of operation.
基金the National Natural Science Foundation of China(No.21266022)the National High Technology Research and Development Program 863(2012AA101800-03+4 种基金2012AA02120562012AA021704)the International Cooperation of Jiangxi Province(No.20101208)the International Science & Technology Cooperation Program of China(No.2010DFB63750)the Natural Science Foundation of Jiangxi Province(No.2008GZH0047)
文摘The carboxyl terminal of sodium oleate has a stronger polarity than that of oleic acid;this terminal is more likely to be dipole polarized and ionically conductive in a microwave field.Sodium oleate was used as the model compound to study the decarboxylation of oleic acid leading to hydrocarbon formation via microwave-assisted pyrolysis technology.The pyrolysis gas,liquid,and solid products were precisely analyzed to deduce the mechanism for decarboxylation of sodium oleate.Microwave energy was able to selectively heat the carboxyl terminal of sodium oleate.During decarboxylation,the double bond in the long hydrocarbon chain formed a p-πconjugated system with the carbanion intermediate.The resulting p-πconjugated system was more stable and beneficial to the pyrolysis reaction(decarboxylation,terminal allylation,isomerization,and aromatization).The physical properties of pyrolysis liquid were generally similar to those of diesel fuel,thereby demonstrating the possible use of microwaves for controlling the decarboxylation of sodium oleate in order to manufacture renewable hydrocarbon fuels.
文摘The purpose of the present study is to develop a methodology to evaluate fuel discharge through the CRGT (control-rod guide tube) during CDAs (core-disruptive accidents) of SFRs (sodium-cooled fast reactors), since fuel discharge will decrease the core reactivity and CRGTs have a potential to provide an effective discharge path. Fuel discharge contains multi-component fluid dynamics with phase changes, and, in the present study, the SFR safety analysis code SIMMER (Sn, implicit, multifield, multicomponent, Eulerian recriticality) was utilized as a technical basis. First, dominant phenomena affecting fuel discharge through the CRGT are identified based on parametric calculations by the SIMMER code. Next, validations on the code models closely relating to these phenomena were carried out based on experimental data. It was shown that the SIMMER code with some model modifications could reproduce the experimental results appropriately. Through the present study, the evaluation methodology for the molten-fuel discharge through the CRGT was successfully developed.