A combination of X-ray powder diffraction, thermogravimetric analysis, diffuse reflection infrared Fourier transform, and ^31p magic-angle spinning nuclear magnetic resonance techniques with density function computati...A combination of X-ray powder diffraction, thermogravimetric analysis, diffuse reflection infrared Fourier transform, and ^31p magic-angle spinning nuclear magnetic resonance techniques with density function computation was used to elucidate the products and mecha- nism of the reactions among silica, H3PO4, and NaH2PO4 during the preparation of silica supported H3PO4 and NaH2PO4 catalysts. The spectral test results indicate that besides polyphosphoric acid, silicon phosphates on silica supported H3PO4 are also formed. On silica supported NaH2PO4 only sodium polyphosphates are present. Density functional theory (DFT) simulations indicate that in the initial stage, reaction of H3PO4 with silanol groups on the silica support is more favorable than that between H3PO4 itself. In contrast, dimerization and trimerization of NaH2PO4 are predicted to be the predominant initial reactions for the silica supported NaH2PO4 catalyst.展开更多
The reaction kinetics for the leaching of low-grade scheelite concentrate was investigated in an autoclave with sodium hydroxide in the presence of phosphate. The effects of stirring speed (300-600 r/min), reaction te...The reaction kinetics for the leaching of low-grade scheelite concentrate was investigated in an autoclave with sodium hydroxide in the presence of phosphate. The effects of stirring speed (300-600 r/min), reaction temperature (353-383 K), sodium hydroxide concentration (1.69-6.76 mol/L) and phosphate concentration (0.68-1.69 mol/L) on the WO3 dissolution ratio were studied. The results showed that the WO3 dissolution ratio was practically independent of stirring speed, while it increased with increasing the reaction temperature, and the concentrations of sodium hydroxide and phosphate. The experimental data were consistent with the shrinking core model, with a surface chemical reaction as the leaching rate-determining step. The apparent activation energy was calculated as 49.56 kJ/mol, and the reaction orders with respect to the concentrations of sodium hydroxide and phosphate were determined as 0.27 and 0.67, respectively. The kinetics equation of the leaching process was established.展开更多
Response surface methodology (RSM) is used to optimize the medium of Tetraselmis sp.-1 which is cell fused microalgae capable of growing under mixotrophic condition. Empirical models are developed to describe the rela...Response surface methodology (RSM) is used to optimize the medium of Tetraselmis sp.-1 which is cell fused microalgae capable of growing under mixotrophic condition. Empirical models are developed to describe the relationships between the operating variables (glucose, urea, sodium dehydrogenate phosphate, sodium chloride) and responses (cell density). Statistical analysis indicates that glucose and urea have significant effects on the microalgae cell density, but other two factors (sodium dehydrogenate phosphate, sodium chloride) have no obvious effect. The path of steepest ascent is used to approach the optimal region of medium composition. Optimal cell density (2.638 g dry weight/L) was reached when the operating conditions were glucose concentration (30.75 %), urea concentration (0.440 g/L), sodium dehydrogenate phosphate (15 mg/L) and sodium chloride (28 g/L).展开更多
Photocatalytic hydrogen peroxide(H_(2)O_(2))production is a promising strategy to replace the traditional production processes;however,the inefficient H_(2)O_(2) productivity limits its application.In this study,oxyge...Photocatalytic hydrogen peroxide(H_(2)O_(2))production is a promising strategy to replace the traditional production processes;however,the inefficient H_(2)O_(2) productivity limits its application.In this study,oxygen-rich g-C_(3)N_(4) with abundant nitrogen vacancies(OCN)was synthesized for photocatalytic H_(2)O_(2) production.X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy indicated that oxygen-containing functional groups(–COOH and C–O–C)were obtained.Electron paramagnetic resonance confirmed the successful introduction of nitrogen vacancies.OCN exhibited efficient photocatalytic H_(2)O_(2) production performance of 1965μmol L^(−1) h^(−1) in air under visible-light irradiation.The high H_(2)O_(2) production was attributed to the enhanced adsorption of oxygen,enlarged specific surface area,and promoted carrier separation.An increased H_(2)O_(2) production rate(5781μmol L^(−1) h^(−1))was achieved in a Na_(3)PO_(4) solution.The improved performance was attributed to the changed reactive oxygen species.Specifically,the adsorbed PO_(4)^(3−) on the surface of the OCN promoted the transfer of holes to the catalyst surface.•O_(2)−obtained by O_(2) reduction reacted with adjacent holes to generate 1O_(2),which could efficiently generate H_(2)O_(2) with isopropanol.Additionally,PO_(4)^(3−),as a stabilizer,inhibited the decomposition of H_(2)O_(2).展开更多
The effect of sodium pyrophosphate (SPH) on the separation of chalcopyrite from galena was examined through flotation, adsorption, electrokinetic studies and infrared spectral analysis. Differential flotation tests ...The effect of sodium pyrophosphate (SPH) on the separation of chalcopyrite from galena was examined through flotation, adsorption, electrokinetic studies and infrared spectral analysis. Differential flotation tests indicate that satisfactory separation can be achieved within the pH range from 2.5 to 6 using SPH to depress the galena, but not the chalcopyrite when O-isopropyl-N-ethyl thionocarbamate (IPETC) is used as the collector. The electrophoretic mohilities of both the minerals dramatically become negatively charged following SPH adsorption in the pH range from 2.5 to 12, The infrared spectral analysis suggests that chemical adsorption occurs on galena surface treated by SPH, indicating that a chelate complex has formed. At weakly acidic pH values, the adsorption density of IPETC onto galena is significantly reduced in the presence of SPH. However, the amount of IPETC adsorbed onto chalcopyrite almost remains at the same level. Since the observed adsorption density of IEPTC onto chalcopyrite is quite high compared to galena, the observed flotation results are explained. A possible mechanism for the interaction between the two sulphide minerals and SPH is discussed.展开更多
This study was focused on orthophosphate adsorption on natural zeolite which was obtained from South of Thailand and has been carried out by Vanadomolybdophosphoric Acid (VMPA) and using spectrophotometry technique....This study was focused on orthophosphate adsorption on natural zeolite which was obtained from South of Thailand and has been carried out by Vanadomolybdophosphoric Acid (VMPA) and using spectrophotometry technique. The phosphate solution were prepared artificially by adding certain quantities of KH2PO4 in water at the initial orthophosphate concentration of 5, 10 and 20 mg/L. While the adsorbent quantity was 1g of natural zeolite per 50 mL, aqueous solution NaOH IN and HCI IN solutions were used as pH regulators. The effect of equilibrium pH, adsorbent mass and contact time was studied. The results showed that natural zeolite adsorption efficiency was 99.18%, 99.33% and 99.02% (5, 10 and 20 mg/L), respectively, at pH of 12 and a contact time of 30 minutes at 298 K. Moreover, the isotherm can be used to evaluate the capacity and nature of the interaction between a sorbent and a sorbate. This work considers the Langmuir and Freundlich isotherm. Based on the R2 of adsorption isotherm studies, the adsorption data for phosphate fitted well the Freundlich isotherm for natural zeolite (R^2=0.99), with multi-layer adsorption. The results are in good agreement with recent experimentl data.展开更多
Transition metal phosphides have been explored as promising active materials for sodium-ion batteries(SIBs)and hydrogen evolution reaction(HER) applications owing to their unique physical and chemical characteristics....Transition metal phosphides have been explored as promising active materials for sodium-ion batteries(SIBs)and hydrogen evolution reaction(HER) applications owing to their unique physical and chemical characteristics. However,they suffer from the drawbacks such as severe agglomeration,and sluggish reaction kinetics. Herein, bimetallic phosphides(Ni2 P/Zn P4) embedded in P-doped carbon hierarchical microspheres are demonstrated with robust structural integrity,fast charge transfer, and abundant active sites. As expected,the optimally structured Ni2 P/Zn P4 composite exhibits good electrochemical performance as an anode material in SIBs,including high specific capacity, good cycling stability and rate capability. Meanwhile, the Ni2 P/Zn P4 composite also exhibits excellent electrocatalytic performance for HER with a small overpotential of 62 m V, a Tafel slope of 53 m V dec^-1, as well as excellent stability.展开更多
文摘A combination of X-ray powder diffraction, thermogravimetric analysis, diffuse reflection infrared Fourier transform, and ^31p magic-angle spinning nuclear magnetic resonance techniques with density function computation was used to elucidate the products and mecha- nism of the reactions among silica, H3PO4, and NaH2PO4 during the preparation of silica supported H3PO4 and NaH2PO4 catalysts. The spectral test results indicate that besides polyphosphoric acid, silicon phosphates on silica supported H3PO4 are also formed. On silica supported NaH2PO4 only sodium polyphosphates are present. Density functional theory (DFT) simulations indicate that in the initial stage, reaction of H3PO4 with silanol groups on the silica support is more favorable than that between H3PO4 itself. In contrast, dimerization and trimerization of NaH2PO4 are predicted to be the predominant initial reactions for the silica supported NaH2PO4 catalyst.
基金Projects(51674067,51422402) supported by the National Natural Science Foundation of ChinaProjects(N150101001,N160106004,N170106005) supported by the Fundamental Research Funds for the Central Universities,China
文摘The reaction kinetics for the leaching of low-grade scheelite concentrate was investigated in an autoclave with sodium hydroxide in the presence of phosphate. The effects of stirring speed (300-600 r/min), reaction temperature (353-383 K), sodium hydroxide concentration (1.69-6.76 mol/L) and phosphate concentration (0.68-1.69 mol/L) on the WO3 dissolution ratio were studied. The results showed that the WO3 dissolution ratio was practically independent of stirring speed, while it increased with increasing the reaction temperature, and the concentrations of sodium hydroxide and phosphate. The experimental data were consistent with the shrinking core model, with a surface chemical reaction as the leaching rate-determining step. The apparent activation energy was calculated as 49.56 kJ/mol, and the reaction orders with respect to the concentrations of sodium hydroxide and phosphate were determined as 0.27 and 0.67, respectively. The kinetics equation of the leaching process was established.
文摘Response surface methodology (RSM) is used to optimize the medium of Tetraselmis sp.-1 which is cell fused microalgae capable of growing under mixotrophic condition. Empirical models are developed to describe the relationships between the operating variables (glucose, urea, sodium dehydrogenate phosphate, sodium chloride) and responses (cell density). Statistical analysis indicates that glucose and urea have significant effects on the microalgae cell density, but other two factors (sodium dehydrogenate phosphate, sodium chloride) have no obvious effect. The path of steepest ascent is used to approach the optimal region of medium composition. Optimal cell density (2.638 g dry weight/L) was reached when the operating conditions were glucose concentration (30.75 %), urea concentration (0.440 g/L), sodium dehydrogenate phosphate (15 mg/L) and sodium chloride (28 g/L).
文摘Photocatalytic hydrogen peroxide(H_(2)O_(2))production is a promising strategy to replace the traditional production processes;however,the inefficient H_(2)O_(2) productivity limits its application.In this study,oxygen-rich g-C_(3)N_(4) with abundant nitrogen vacancies(OCN)was synthesized for photocatalytic H_(2)O_(2) production.X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy indicated that oxygen-containing functional groups(–COOH and C–O–C)were obtained.Electron paramagnetic resonance confirmed the successful introduction of nitrogen vacancies.OCN exhibited efficient photocatalytic H_(2)O_(2) production performance of 1965μmol L^(−1) h^(−1) in air under visible-light irradiation.The high H_(2)O_(2) production was attributed to the enhanced adsorption of oxygen,enlarged specific surface area,and promoted carrier separation.An increased H_(2)O_(2) production rate(5781μmol L^(−1) h^(−1))was achieved in a Na_(3)PO_(4) solution.The improved performance was attributed to the changed reactive oxygen species.Specifically,the adsorbed PO_(4)^(3−) on the surface of the OCN promoted the transfer of holes to the catalyst surface.•O_(2)−obtained by O_(2) reduction reacted with adjacent holes to generate 1O_(2),which could efficiently generate H_(2)O_(2) with isopropanol.Additionally,PO_(4)^(3−),as a stabilizer,inhibited the decomposition of H_(2)O_(2).
基金Financial support from the Foundation of the State Key Laboratory of Comprehensive Utilization of Low-Grade Ores (Zijin Mining Group Co., Ltd.)the National Basic Research Program of China(No. 2010CB630905)
文摘The effect of sodium pyrophosphate (SPH) on the separation of chalcopyrite from galena was examined through flotation, adsorption, electrokinetic studies and infrared spectral analysis. Differential flotation tests indicate that satisfactory separation can be achieved within the pH range from 2.5 to 6 using SPH to depress the galena, but not the chalcopyrite when O-isopropyl-N-ethyl thionocarbamate (IPETC) is used as the collector. The electrophoretic mohilities of both the minerals dramatically become negatively charged following SPH adsorption in the pH range from 2.5 to 12, The infrared spectral analysis suggests that chemical adsorption occurs on galena surface treated by SPH, indicating that a chelate complex has formed. At weakly acidic pH values, the adsorption density of IPETC onto galena is significantly reduced in the presence of SPH. However, the amount of IPETC adsorbed onto chalcopyrite almost remains at the same level. Since the observed adsorption density of IEPTC onto chalcopyrite is quite high compared to galena, the observed flotation results are explained. A possible mechanism for the interaction between the two sulphide minerals and SPH is discussed.
文摘This study was focused on orthophosphate adsorption on natural zeolite which was obtained from South of Thailand and has been carried out by Vanadomolybdophosphoric Acid (VMPA) and using spectrophotometry technique. The phosphate solution were prepared artificially by adding certain quantities of KH2PO4 in water at the initial orthophosphate concentration of 5, 10 and 20 mg/L. While the adsorbent quantity was 1g of natural zeolite per 50 mL, aqueous solution NaOH IN and HCI IN solutions were used as pH regulators. The effect of equilibrium pH, adsorbent mass and contact time was studied. The results showed that natural zeolite adsorption efficiency was 99.18%, 99.33% and 99.02% (5, 10 and 20 mg/L), respectively, at pH of 12 and a contact time of 30 minutes at 298 K. Moreover, the isotherm can be used to evaluate the capacity and nature of the interaction between a sorbent and a sorbate. This work considers the Langmuir and Freundlich isotherm. Based on the R2 of adsorption isotherm studies, the adsorption data for phosphate fitted well the Freundlich isotherm for natural zeolite (R^2=0.99), with multi-layer adsorption. The results are in good agreement with recent experimentl data.
基金supported by the National Natural Science Foundation of China (51872334, 51874362 and 51572299)the Innovation-Driven Project of Central South University (2017CX001 and 2018CX004)the Natural Science Foundation of Hunan Province,China (2018JJ1036)
文摘Transition metal phosphides have been explored as promising active materials for sodium-ion batteries(SIBs)and hydrogen evolution reaction(HER) applications owing to their unique physical and chemical characteristics. However,they suffer from the drawbacks such as severe agglomeration,and sluggish reaction kinetics. Herein, bimetallic phosphides(Ni2 P/Zn P4) embedded in P-doped carbon hierarchical microspheres are demonstrated with robust structural integrity,fast charge transfer, and abundant active sites. As expected,the optimally structured Ni2 P/Zn P4 composite exhibits good electrochemical performance as an anode material in SIBs,including high specific capacity, good cycling stability and rate capability. Meanwhile, the Ni2 P/Zn P4 composite also exhibits excellent electrocatalytic performance for HER with a small overpotential of 62 m V, a Tafel slope of 53 m V dec^-1, as well as excellent stability.