Na-ion diffusion kinetics is a key factor that decided the charge/discharge rate of the electrode materials in Na-ion batteries.In this work,two extreme concentrations of NaMnO_(2) and Na_(2/3)Li_(1/6)Mn_(5/6)O_(2) ar...Na-ion diffusion kinetics is a key factor that decided the charge/discharge rate of the electrode materials in Na-ion batteries.In this work,two extreme concentrations of NaMnO_(2) and Na_(2/3)Li_(1/6)Mn_(5/6)O_(2) are considered,namely,the vacancy migration of Na ions in the fully intercalated and the migration of Na ions in the fully de-intercalated.The Na-vacancy and Na^(+)distribution in NaMnO_(2) migrated along oxygen dumbbell hop(ODH)and tetrahedral site hop(TSH),and the migration energy barriers were 0.374 and 0.296 eV,respectively.In NaLi_(1/6)Mn_(5/6)O_(2),the inhomogeneity of Li doping leads to the narrowing of the interlayer spacing by 0.9%and the increase of the energy barrier by 53.8%.On the other hand,due to the alleviation of Jahn-Teller effect of neighboring Mn,the bonding strength of Mn-O was enhanced,so that the energy barrier of path 2-3 in Mn-L1 and Mn-L2 was the lowest,which was 0.234 and 0.424 eV,respectively.In Na_(1/6)Li_(1/6)Mn_(5/6)O_(2),the migration energy barriers of Na-L2 and Na-L3 are 1.233 and 0.779 eV,respectively,because Li+migrates from the transition(TM)layer to the alkali metal(AM)layer with Na^(+)migration,which requires additional energy.展开更多
基金Projects(51602352,51974373,51874358,51772333,61533020) supported by the National Natural Science Foundation of ChinaProject(2019JZZY020123) supported by the Major Scientific and Technological Innovation Projects of Shandong Province,China。
文摘Na-ion diffusion kinetics is a key factor that decided the charge/discharge rate of the electrode materials in Na-ion batteries.In this work,two extreme concentrations of NaMnO_(2) and Na_(2/3)Li_(1/6)Mn_(5/6)O_(2) are considered,namely,the vacancy migration of Na ions in the fully intercalated and the migration of Na ions in the fully de-intercalated.The Na-vacancy and Na^(+)distribution in NaMnO_(2) migrated along oxygen dumbbell hop(ODH)and tetrahedral site hop(TSH),and the migration energy barriers were 0.374 and 0.296 eV,respectively.In NaLi_(1/6)Mn_(5/6)O_(2),the inhomogeneity of Li doping leads to the narrowing of the interlayer spacing by 0.9%and the increase of the energy barrier by 53.8%.On the other hand,due to the alleviation of Jahn-Teller effect of neighboring Mn,the bonding strength of Mn-O was enhanced,so that the energy barrier of path 2-3 in Mn-L1 and Mn-L2 was the lowest,which was 0.234 and 0.424 eV,respectively.In Na_(1/6)Li_(1/6)Mn_(5/6)O_(2),the migration energy barriers of Na-L2 and Na-L3 are 1.233 and 0.779 eV,respectively,because Li+migrates from the transition(TM)layer to the alkali metal(AM)layer with Na^(+)migration,which requires additional energy.