目的初步观察草酸铂(抗肿瘤药)神经毒性的作用机制。方法分离大鼠脊髓背根神经节神经元细胞,用膜片钳法分别检测草酸铂细胞外和细胞内给药时,神经元细胞膜上钠离子通道电流的变化。结果在给药5、10、15 mi n,与给药前比较,钠离子电流振...目的初步观察草酸铂(抗肿瘤药)神经毒性的作用机制。方法分离大鼠脊髓背根神经节神经元细胞,用膜片钳法分别检测草酸铂细胞外和细胞内给药时,神经元细胞膜上钠离子通道电流的变化。结果在给药5、10、15 mi n,与给药前比较,钠离子电流振幅大、中、小细胞都有明显降低(P<0.05);小细胞给药后不同时间点的钠离子电流振幅抑制率明显大于同期大、中细胞的抑制率,其对小细胞的抑制作用明显高于大细胞和中细胞(P<0.05)。结论草酸铂对神经元细胞膜上电压门控钠离子通道的抑制可能是其神经毒性作用机制;背根神经节小细胞可能与草酸铂神经毒性症状的产生关系较密切。展开更多
Objective To explore the effect of allocryptopine (All) on the Late sodium current (INa,Late) of atrial myocytes in spontaneously hyper- tensive rats (SHR). Method The enzyme digestion method was used to separat...Objective To explore the effect of allocryptopine (All) on the Late sodium current (INa,Late) of atrial myocytes in spontaneously hyper- tensive rats (SHR). Method The enzyme digestion method was used to separate single atrial myocytes from SHR and Wistar-Kyoto rat (WKY) rats. INa,Late was record by patch-clamp technique and the effect of All on the current was evaluated. Results Comparing with WKY cells, markedly increasing of INa,Late current in SHR myocytes was found from 0.24 ± 0.02 pA/pF of WKY cells to 1.73± 0.04 pA/pF of SHR cells (P 〈 0.01, n = 15). After treament with 30 μmol/L All; the current densities was reduced to 0.92 ± 0.03 pA/pF. The ratio of INa,Late/INa,peak of WKY and SHR were 0.09% ± 0.01% and 0.71% ± 0.02%, INa, Late/INa,peak of SHR was reduced to 0.37% ± 0.02% by 30 μmol/L All (P 〈 0.01, n = 15). We also determined the effect of All on the gating mechanism of the INa,Late in the SHR cells. It was found that All decreased the INa,Late by alleviating the inactivation of the channels and increasing the window current of sodium channel. Conclusion Increased INa,Late in SHR atrial myocytes and the prolonged APD were inhibited by All coming from Chinese herb medicine.展开更多
We reported a facile and robust one-pot wet chemistry strategy to achieve the growth of uniform three dimensional(3D) MoSe_2 ultrathin nanostructures on graphene nanosheets to form high quality MoSe_2/rGO hybrid nan...We reported a facile and robust one-pot wet chemistry strategy to achieve the growth of uniform three dimensional(3D) MoSe_2 ultrathin nanostructures on graphene nanosheets to form high quality MoSe_2/rGO hybrid nanostructures.Owing to the graphene as a support,it can significantly prevent the aggregation of MoSe_2 and the distribution of MoSe_2 on graphene was highly uniform.Importantly,due to the unique structures,the as-harvested MoSe_2/rGO hybrid exhibited excellent electrochemical performance as anode materials for sodium-ion battery(SIB).When evaluated in a half cell system,the MoSe_2/rGO hybrid nanostructures could deliver a capacity of 200.2 mA h g^(-1) at8 A g^(-1) and maintain a capacity of 230.1 mA h g^(-1) over 100 cycles at 5 A g^(-1).When coupled with Na_3V_2(PO_4)_3 cathode in a full cell system,the material could deliver a discharge capacity of 363.1 mA h g^(-1) at the current density of 0.5 A g^(-1).Moreover,a discharge capacity of 56.4 mA h g^(-1) could be achieved even at a high current density of 10 A g^(-1),which clearly suggested the high power capability of MoSe_2/rGO hybrid nanostructures for sodium ion energy storage.展开更多
MoO_2@N-doped C nanofibers(MoO_2@NC NFs)were synthesized by electrospinning with polyacrylonitrile as carbon source.The in situ formed MoO_2nanocrystals are completely embedded in the carbon nanofibers,which can not...MoO_2@N-doped C nanofibers(MoO_2@NC NFs)were synthesized by electrospinning with polyacrylonitrile as carbon source.The in situ formed MoO_2nanocrystals are completely embedded in the carbon nanofibers,which can not only accelerate ion transition,but also act as a buffer to avoid the mechanical degradation of active material due to the volume changes during charge/discharge cycling.When used as the anode material for both Li/Na-ion batteries,the as-synthesized MoO_2@NC NFs displayed excellent Li~+/Na~+storage properties.As the anode for Li-ion battery,the MoO_2@NC NFs display a high discharge capacity of 930 mA h g^(-1)at a current density of 200 mA g^(-1)for 100 cycles,and 720 mA h g^(-1)at a current density of 1 A g^(-1)for 600 cycles.Moreover,the discharge capacity of 350 mA h g^(-1)could be realized at a current density of 100 mA g^(-1)for 200 cycles for Na-ion battery.展开更多
文摘目的初步观察草酸铂(抗肿瘤药)神经毒性的作用机制。方法分离大鼠脊髓背根神经节神经元细胞,用膜片钳法分别检测草酸铂细胞外和细胞内给药时,神经元细胞膜上钠离子通道电流的变化。结果在给药5、10、15 mi n,与给药前比较,钠离子电流振幅大、中、小细胞都有明显降低(P<0.05);小细胞给药后不同时间点的钠离子电流振幅抑制率明显大于同期大、中细胞的抑制率,其对小细胞的抑制作用明显高于大细胞和中细胞(P<0.05)。结论草酸铂对神经元细胞膜上电压门控钠离子通道的抑制可能是其神经毒性作用机制;背根神经节小细胞可能与草酸铂神经毒性症状的产生关系较密切。
基金This work was supported by the grant from the National Natural Science Foundation of China (grant number. No: 81030002,81170177, 81100215, 81373835).
文摘Objective To explore the effect of allocryptopine (All) on the Late sodium current (INa,Late) of atrial myocytes in spontaneously hyper- tensive rats (SHR). Method The enzyme digestion method was used to separate single atrial myocytes from SHR and Wistar-Kyoto rat (WKY) rats. INa,Late was record by patch-clamp technique and the effect of All on the current was evaluated. Results Comparing with WKY cells, markedly increasing of INa,Late current in SHR myocytes was found from 0.24 ± 0.02 pA/pF of WKY cells to 1.73± 0.04 pA/pF of SHR cells (P 〈 0.01, n = 15). After treament with 30 μmol/L All; the current densities was reduced to 0.92 ± 0.03 pA/pF. The ratio of INa,Late/INa,peak of WKY and SHR were 0.09% ± 0.01% and 0.71% ± 0.02%, INa, Late/INa,peak of SHR was reduced to 0.37% ± 0.02% by 30 μmol/L All (P 〈 0.01, n = 15). We also determined the effect of All on the gating mechanism of the INa,Late in the SHR cells. It was found that All decreased the INa,Late by alleviating the inactivation of the channels and increasing the window current of sodium channel. Conclusion Increased INa,Late in SHR atrial myocytes and the prolonged APD were inhibited by All coming from Chinese herb medicine.
基金supported by the start-up funding from Xi'an Jiaotong University,the Fundamental Research Funds for the Central Universities(2015qngzl2)the China National Funds for Excellent Young Scientists(21522106)the National Natural Science Foundation of China(21371140)
文摘We reported a facile and robust one-pot wet chemistry strategy to achieve the growth of uniform three dimensional(3D) MoSe_2 ultrathin nanostructures on graphene nanosheets to form high quality MoSe_2/rGO hybrid nanostructures.Owing to the graphene as a support,it can significantly prevent the aggregation of MoSe_2 and the distribution of MoSe_2 on graphene was highly uniform.Importantly,due to the unique structures,the as-harvested MoSe_2/rGO hybrid exhibited excellent electrochemical performance as anode materials for sodium-ion battery(SIB).When evaluated in a half cell system,the MoSe_2/rGO hybrid nanostructures could deliver a capacity of 200.2 mA h g^(-1) at8 A g^(-1) and maintain a capacity of 230.1 mA h g^(-1) over 100 cycles at 5 A g^(-1).When coupled with Na_3V_2(PO_4)_3 cathode in a full cell system,the material could deliver a discharge capacity of 363.1 mA h g^(-1) at the current density of 0.5 A g^(-1).Moreover,a discharge capacity of 56.4 mA h g^(-1) could be achieved even at a high current density of 10 A g^(-1),which clearly suggested the high power capability of MoSe_2/rGO hybrid nanostructures for sodium ion energy storage.
基金supported by the National Natural Science Foundation of China (51302079)
文摘MoO_2@N-doped C nanofibers(MoO_2@NC NFs)were synthesized by electrospinning with polyacrylonitrile as carbon source.The in situ formed MoO_2nanocrystals are completely embedded in the carbon nanofibers,which can not only accelerate ion transition,but also act as a buffer to avoid the mechanical degradation of active material due to the volume changes during charge/discharge cycling.When used as the anode material for both Li/Na-ion batteries,the as-synthesized MoO_2@NC NFs displayed excellent Li~+/Na~+storage properties.As the anode for Li-ion battery,the MoO_2@NC NFs display a high discharge capacity of 930 mA h g^(-1)at a current density of 200 mA g^(-1)for 100 cycles,and 720 mA h g^(-1)at a current density of 1 A g^(-1)for 600 cycles.Moreover,the discharge capacity of 350 mA h g^(-1)could be realized at a current density of 100 mA g^(-1)for 200 cycles for Na-ion battery.