One-pot synthesis of cyclic aldol tetramer and α, β-unsaturated aldol from C3-C8 linear aldehydes using phase-transfer catalyst(PTC), quaternary ammonium, combined with sodium hydroxide as catalysts was investigat...One-pot synthesis of cyclic aldol tetramer and α, β-unsaturated aldol from C3-C8 linear aldehydes using phase-transfer catalyst(PTC), quaternary ammonium, combined with sodium hydroxide as catalysts was investigated. Butanal was subjected for detail investigations to study the effect of parameters. It was found that the selectivity of cyclic aldol tetramer depends greatly on the operating conditions of the reaction, especially the PTC/butanal molar ratio. The average selectivity of 2-hydroxy-6-propyl-l, 3, 5-triethyl-3-cyclohexene-1-carboxaldehyde(HPTECHCA) was 54.41% using tetrabutylammonium chloride combined with 14%(mass fraction) Na OH as catalysts at 60 ℃for 2 h with a PTC-to-butanal molar ratio of 0.09:1. Pentanal was more likely to generate cyclic aldol tetramer compared with other aldehydes under the optimum experimental conditions. Recovery of the PTC through water washing followed by adding enough sodium hydroxide from the washings was also demonstrated.展开更多
基金Project(2013AA064102)supported by the National High-Tech Research Program of ChinaProject(11JJ6014)supported by the Hunan Provincial Natural Science Foundation of China
文摘One-pot synthesis of cyclic aldol tetramer and α, β-unsaturated aldol from C3-C8 linear aldehydes using phase-transfer catalyst(PTC), quaternary ammonium, combined with sodium hydroxide as catalysts was investigated. Butanal was subjected for detail investigations to study the effect of parameters. It was found that the selectivity of cyclic aldol tetramer depends greatly on the operating conditions of the reaction, especially the PTC/butanal molar ratio. The average selectivity of 2-hydroxy-6-propyl-l, 3, 5-triethyl-3-cyclohexene-1-carboxaldehyde(HPTECHCA) was 54.41% using tetrabutylammonium chloride combined with 14%(mass fraction) Na OH as catalysts at 60 ℃for 2 h with a PTC-to-butanal molar ratio of 0.09:1. Pentanal was more likely to generate cyclic aldol tetramer compared with other aldehydes under the optimum experimental conditions. Recovery of the PTC through water washing followed by adding enough sodium hydroxide from the washings was also demonstrated.