The effect of intermetallic compounds on the heat resistance of transition joint was investigated. The experiment of post-weld heat treatment for the hot roll bonded titanium alloy-stainless steel joint using nickels ...The effect of intermetallic compounds on the heat resistance of transition joint was investigated. The experiment of post-weld heat treatment for the hot roll bonded titanium alloy-stainless steel joint using nickels interlayer was carried out, and the interface microstructure evolution due to heat treatment was presented. There was not found significant interdiffusion at stainless steel/nickel interface, when the specimens were heat treated in the temperature range of 600-800 °C for 10 and 30 min, while micro-cracks occurred at the stainless steel/nickel interface heat treated at 700 °C for 30 min. The thickness of intermetallic layers at nickel/titanium alloy interface increased at 600 °C, and micro-cracks occurred at 700 and 800 °C. The micro-cracks occurred between intermetallic layers or between intermetallic layer and nickel interlayer as well. The tensile strength of the transition joint decreased with the increase of heat treatment temperature or holding time.展开更多
Defect-free butt joints of 3003 Al alloy to mild steel plates with 3 mm thickness were performed using friction stir welding (FSW). A heat input model reported for similar FSW was simplified and used to investigate ...Defect-free butt joints of 3003 Al alloy to mild steel plates with 3 mm thickness were performed using friction stir welding (FSW). A heat input model reported for similar FSW was simplified and used to investigate the effects of welding speed, rotation speed and tool shoulder diameter on the microstructure and properties of dissimilar welds. The comparison between microstructure, intermetallics and strength of welds shows the good conformity between the results and the calculated heat input factor (HIF) achieved from the model. The joint strength is controlled by Al/Fe interface at HIF of 0.2-0.4, by TMAZ at HIF of 0.4-0.8 and by intermetallics and/or defects at HIF0.8.展开更多
Two Fe-Al-based intermetallic aluminide coatings were fabricated on 430-SS(Fe-Cr)and 304-SS(Fe-Cr-Ni)substrates by pressure-assisted solid diffusion bonding with coating on pure Fe as control.The microstructure and in...Two Fe-Al-based intermetallic aluminide coatings were fabricated on 430-SS(Fe-Cr)and 304-SS(Fe-Cr-Ni)substrates by pressure-assisted solid diffusion bonding with coating on pure Fe as control.The microstructure and intermetallic phases of the coatings were characterized by SEM,EDS and EBSD.A network of Cr2Al13 with matrix of Fe4Al13 was formed by inter-diffusing of Al with the substrates.The corrosion behavior of intermetallic coatings was investigated in 0.5 mol/L HCl solution by mass-loss,OCP,Tafel plot and EIS.It was found that corrosion resistance was greatly enhanced by dozens of times after the addition of Cr and Ni compared with that on pure Fe.The presence of cracks in the coating on 430-SS provided a pathway for corrosion media to penetrate to the substrate and accelerated the corrosion rate.Moreover,the corrosion product was analyzed by XRD,demonstrating that the addition of Cr and Ni facilitated the formation of more corrosion resistant phases,and therefore improved corrosion resistance.展开更多
Commercial pure aluminum and galvanized carbon steel were lap-welded using the weld-brazing(WB)technique.Three types of aluminum filler materials(4043,4047,and 5356) were used for WB.The joint strength and intermetall...Commercial pure aluminum and galvanized carbon steel were lap-welded using the weld-brazing(WB)technique.Three types of aluminum filler materials(4043,4047,and 5356) were used for WB.The joint strength and intermetallic compounds at the interface of three series of samples were analyzed and compared.Depending on the Si content,a variety of ternary Al-Fe-Si intermetallic compounds(IMCs) such as Fe_(4)(Al,Si)_(13),Fe_(2) Al_(8) Si(τ_(5)),and Fe_(2) Al_(9) Si_(2)(τ_(6)) were formed at the interface.Mg element in 5356 filler material cannot contribute to the formation of Al-Fe intermetallic phases due to the positive mixing enthalpy of Mg-Fe.The presence of Mg enhances the hot cracking phenomenon near the Al-Fe intermetallic compound at the interface.Zn coating does not participate in intermetallic formation due to its evaporation during WB.It was concluded that the softening of the base metal in the heat-affected zone rather than the IMCs determines the joint efficiency.展开更多
The effect of Si content on the microstructures and growth kinetics of intermetallic compounds(IMCs)formed during the initial interfacial reaction(<10 s)between solid steel and liquid aluminum was investigated by a...The effect of Si content on the microstructures and growth kinetics of intermetallic compounds(IMCs)formed during the initial interfacial reaction(<10 s)between solid steel and liquid aluminum was investigated by a thermophysical simulation method.The influence of Si addition on interfacial mechanical properties was revealed by a high-frequency induction brazing.The results showed that IMCs layers mainly consisted ofη-Fe_(2)Al_(5)andθ-Fe_(4)Al_(13).The addition of Si reduced the thickness of the IMCs layer.The growth of theηphase was governed by the diffusion process when adding 2 wt.%Si to the aluminum melt.When 5 wt.%or 8 wt.%Si was added to aluminum,the growth was governed by both the diffusion process and interfacial reaction,and ternary phaseτ1/τ9-(Al,Si)_(5)Fe_(3)was formed in theηphase.The apparent activation energies of theηphase decreased gradually with increasing Si content.The joint with pure aluminum metal had the highest tensile strength and impact energy.展开更多
The inhibition ability of 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol (APTT), ethylenediaminetetra-acetic acid (EDTA) and thiourea (TU) for mild steel corrosion in 1.0 moFL HC1 solution at 30 ℃ was investigated...The inhibition ability of 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol (APTT), ethylenediaminetetra-acetic acid (EDTA) and thiourea (TU) for mild steel corrosion in 1.0 moFL HC1 solution at 30 ℃ was investigated. Tafel polarization and electrochemical impedance spectroscopy (EIS) were used to investigate the influence of these organic compounds as corrosion inhibitors of mild steel in 1.0 mol/L HC1 solution at 30 ℃. The inhibition mechanism was discussed in terms of Langrnuir isotherm model. Results obtained from Tafel polarization and impedance measurements are in a good agreement. The inhibition efficiency increases with the increase of the inhibitor concentration. The adsorption of the inhibitors on the mild steel surface follows Langmuir adsorption isotherm and the free energy of adsorption AGads indicates that the adsorption of APTT, EDTA, and TU molecules is a spontaneous process and a typical chemisorption.展开更多
Austenitic stainless steels, when exposed to welding conditions or aging for length of service, it's observed the formation of numerous deleterious phases, such as several kinds of carbides type MC, M6C, M7C3, M23C6,...Austenitic stainless steels, when exposed to welding conditions or aging for length of service, it's observed the formation of numerous deleterious phases, such as several kinds of carbides type MC, M6C, M7C3, M23C6, and intermetallic secondary phases (sigma, chi, laves), which cause the process of intergranular corrosion. The aim of this work was verifying the formation of the types of carbides and/or intermetallic phases existing in the stainless AISI 304 at 800 ℃, varying the timing of heat treatment between 30, 360 and 1,440 min. The optical microscopy analysis revealed the predominant formation of the carbide type M23C6. The results of DL-EPR (double loop electrochemical potentiokinetic reactivation) tests showed a gradual increase in the precipitation of this carbide with the increase of treatment time. The potentiodynamic polarization showed that the precipitation of this carbide reduce the formation of the Cr2O3 passive layer, suggesting that the precipitate carbide to be predominantly of the Cr23C6 type.展开更多
SCC (stress corrosion cracking) is environmentally well-known as a failure caused by exposure to a corroding while under a sustained tensile stress. SCC is most often rapid, unpredictable. Failure can occur in a sho...SCC (stress corrosion cracking) is environmentally well-known as a failure caused by exposure to a corroding while under a sustained tensile stress. SCC is most often rapid, unpredictable. Failure can occur in a short time as a few hours or take years and decades to happen. Most alloys are liable to SCC in one or more environments requiring careful consideration of alloy type in component design. In aqueous chloride environments austenitic stainless steels and many nickel based alloys are common to perform poorly. SCC of austenitic stainless steels of types 316 was investigated as a function of applied stress at room temperature in sodium chloride solutions using a constant load method. The experiment uses a spring loaded fixture type and is based on ASTM G49 for experiment method, and E292 for geometry of notched specimen. The stress depends on fracture appearance and parameters of time to cracking, and cracking growth. The results explained in terms of comparison between the two concentrations of sodium chloride solutions.展开更多
基金Project(AWPT-M07)supported by the State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology
文摘The effect of intermetallic compounds on the heat resistance of transition joint was investigated. The experiment of post-weld heat treatment for the hot roll bonded titanium alloy-stainless steel joint using nickels interlayer was carried out, and the interface microstructure evolution due to heat treatment was presented. There was not found significant interdiffusion at stainless steel/nickel interface, when the specimens were heat treated in the temperature range of 600-800 °C for 10 and 30 min, while micro-cracks occurred at the stainless steel/nickel interface heat treated at 700 °C for 30 min. The thickness of intermetallic layers at nickel/titanium alloy interface increased at 600 °C, and micro-cracks occurred at 700 and 800 °C. The micro-cracks occurred between intermetallic layers or between intermetallic layer and nickel interlayer as well. The tensile strength of the transition joint decreased with the increase of heat treatment temperature or holding time.
文摘Defect-free butt joints of 3003 Al alloy to mild steel plates with 3 mm thickness were performed using friction stir welding (FSW). A heat input model reported for similar FSW was simplified and used to investigate the effects of welding speed, rotation speed and tool shoulder diameter on the microstructure and properties of dissimilar welds. The comparison between microstructure, intermetallics and strength of welds shows the good conformity between the results and the calculated heat input factor (HIF) achieved from the model. The joint strength is controlled by Al/Fe interface at HIF of 0.2-0.4, by TMAZ at HIF of 0.4-0.8 and by intermetallics and/or defects at HIF0.8.
基金Projects(51501089,55104012) supported by the National Natural Science Foundation of ChinaProjects(BK20130945,BK20130914) supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Project supported by the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institution,ChinaProject supported by Nanjing Tech University,China
文摘Two Fe-Al-based intermetallic aluminide coatings were fabricated on 430-SS(Fe-Cr)and 304-SS(Fe-Cr-Ni)substrates by pressure-assisted solid diffusion bonding with coating on pure Fe as control.The microstructure and intermetallic phases of the coatings were characterized by SEM,EDS and EBSD.A network of Cr2Al13 with matrix of Fe4Al13 was formed by inter-diffusing of Al with the substrates.The corrosion behavior of intermetallic coatings was investigated in 0.5 mol/L HCl solution by mass-loss,OCP,Tafel plot and EIS.It was found that corrosion resistance was greatly enhanced by dozens of times after the addition of Cr and Ni compared with that on pure Fe.The presence of cracks in the coating on 430-SS provided a pathway for corrosion media to penetrate to the substrate and accelerated the corrosion rate.Moreover,the corrosion product was analyzed by XRD,demonstrating that the addition of Cr and Ni facilitated the formation of more corrosion resistant phases,and therefore improved corrosion resistance.
基金Project(97.13966(97.11.15)) supported by the Deputy of Research and Technology of Arak University,Iran。
文摘Commercial pure aluminum and galvanized carbon steel were lap-welded using the weld-brazing(WB)technique.Three types of aluminum filler materials(4043,4047,and 5356) were used for WB.The joint strength and intermetallic compounds at the interface of three series of samples were analyzed and compared.Depending on the Si content,a variety of ternary Al-Fe-Si intermetallic compounds(IMCs) such as Fe_(4)(Al,Si)_(13),Fe_(2) Al_(8) Si(τ_(5)),and Fe_(2) Al_(9) Si_(2)(τ_(6)) were formed at the interface.Mg element in 5356 filler material cannot contribute to the formation of Al-Fe intermetallic phases due to the positive mixing enthalpy of Mg-Fe.The presence of Mg enhances the hot cracking phenomenon near the Al-Fe intermetallic compound at the interface.Zn coating does not participate in intermetallic formation due to its evaporation during WB.It was concluded that the softening of the base metal in the heat-affected zone rather than the IMCs determines the joint efficiency.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(No.51875037)the Beijing Municipal Natural Science Foundation,China(No.3192021)the Fundamental Research Funds for the Central Universities,China(No.FRF-GF-18-004B).
文摘The effect of Si content on the microstructures and growth kinetics of intermetallic compounds(IMCs)formed during the initial interfacial reaction(<10 s)between solid steel and liquid aluminum was investigated by a thermophysical simulation method.The influence of Si addition on interfacial mechanical properties was revealed by a high-frequency induction brazing.The results showed that IMCs layers mainly consisted ofη-Fe_(2)Al_(5)andθ-Fe_(4)Al_(13).The addition of Si reduced the thickness of the IMCs layer.The growth of theηphase was governed by the diffusion process when adding 2 wt.%Si to the aluminum melt.When 5 wt.%or 8 wt.%Si was added to aluminum,the growth was governed by both the diffusion process and interfacial reaction,and ternary phaseτ1/τ9-(Al,Si)_(5)Fe_(3)was formed in theηphase.The apparent activation energies of theηphase decreased gradually with increasing Si content.The joint with pure aluminum metal had the highest tensile strength and impact energy.
基金Project(UKM-GUP-BTT-07-25-170) supported by Universiti Kebangsaan Malaysia
文摘The inhibition ability of 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol (APTT), ethylenediaminetetra-acetic acid (EDTA) and thiourea (TU) for mild steel corrosion in 1.0 moFL HC1 solution at 30 ℃ was investigated. Tafel polarization and electrochemical impedance spectroscopy (EIS) were used to investigate the influence of these organic compounds as corrosion inhibitors of mild steel in 1.0 mol/L HC1 solution at 30 ℃. The inhibition mechanism was discussed in terms of Langrnuir isotherm model. Results obtained from Tafel polarization and impedance measurements are in a good agreement. The inhibition efficiency increases with the increase of the inhibitor concentration. The adsorption of the inhibitors on the mild steel surface follows Langmuir adsorption isotherm and the free energy of adsorption AGads indicates that the adsorption of APTT, EDTA, and TU molecules is a spontaneous process and a typical chemisorption.
文摘Austenitic stainless steels, when exposed to welding conditions or aging for length of service, it's observed the formation of numerous deleterious phases, such as several kinds of carbides type MC, M6C, M7C3, M23C6, and intermetallic secondary phases (sigma, chi, laves), which cause the process of intergranular corrosion. The aim of this work was verifying the formation of the types of carbides and/or intermetallic phases existing in the stainless AISI 304 at 800 ℃, varying the timing of heat treatment between 30, 360 and 1,440 min. The optical microscopy analysis revealed the predominant formation of the carbide type M23C6. The results of DL-EPR (double loop electrochemical potentiokinetic reactivation) tests showed a gradual increase in the precipitation of this carbide with the increase of treatment time. The potentiodynamic polarization showed that the precipitation of this carbide reduce the formation of the Cr2O3 passive layer, suggesting that the precipitate carbide to be predominantly of the Cr23C6 type.
文摘SCC (stress corrosion cracking) is environmentally well-known as a failure caused by exposure to a corroding while under a sustained tensile stress. SCC is most often rapid, unpredictable. Failure can occur in a short time as a few hours or take years and decades to happen. Most alloys are liable to SCC in one or more environments requiring careful consideration of alloy type in component design. In aqueous chloride environments austenitic stainless steels and many nickel based alloys are common to perform poorly. SCC of austenitic stainless steels of types 316 was investigated as a function of applied stress at room temperature in sodium chloride solutions using a constant load method. The experiment uses a spring loaded fixture type and is based on ASTM G49 for experiment method, and E292 for geometry of notched specimen. The stress depends on fracture appearance and parameters of time to cracking, and cracking growth. The results explained in terms of comparison between the two concentrations of sodium chloride solutions.