The heating and melting mechanisms of the pellets immersed in liquid slag were investigated, and the effect of the pellet heating and the melting conditions were studied. The results show that the dust component in th...The heating and melting mechanisms of the pellets immersed in liquid slag were investigated, and the effect of the pellet heating and the melting conditions were studied. The results show that the dust component in the pellet is melted from the surface and no metallic elements are melted before the dust component, the time for the pellet completely melted is reduced as the iron powder content increases since the metallic iron has high thermal conductivity. These are four stages of heating and melting of pellet in liquid slag, they are the growth and melt of solid slag shell, penetration of liquid slag, dissolving of dust component and melting of reduced metals. The lifetime of the solid slag shell is in the range of 7-16 s and increasing the pre-heating temperature of the pellet and the slag temperature can shorten the slag shell lifetime. The time for the dust component in the pellet to be melted completely is in the range of 20-45 s and increasing the pre-heating temperature, especially in the range of 600-800 ℃, can obviously reduce the melting time. A higher slag temperature can also improve the pellet melting and the melting time is reduced by 10-15 s when the slag temperature is increased from 1 450 to 1 550 ℃. The pellet with higher content of iron powder is beneficial to the melting by improving the heat conductivity.展开更多
The restoration mechanisms for static recrystallization of work-hardened austenite were investigated by using double-pass compression tests performed on medium-carbon steel containing chromium and molybdenum. The soft...The restoration mechanisms for static recrystallization of work-hardened austenite were investigated by using double-pass compression tests performed on medium-carbon steel containing chromium and molybdenum. The softening fraction was defined by 2% offset method. The results show that Avrami exponent of about 0.21 is insensitive to deformation temperature, indicating that the action of steel grade should be considered. The time of 50% recrystallization (t0.5) decreases noteworthily with the increase of deformation temperature. Apparent activation energy for static recrystallization of 195 kJ/mol, which is close to that of vanadium microalloyed steel, is obtained by calculating. The increasing trend of the driving force for recrystallization is opposite to that of the deformation temperature, which is attributed to the number of operative slip system increasing as temperature increasing.展开更多
A simulation-based multi-objective optimization approach for roll shifting strategy in hot strip mills was presented. Firstly, the effect of roll shifting strategy on wear contour was investigated by mtmerical simulat...A simulation-based multi-objective optimization approach for roll shifting strategy in hot strip mills was presented. Firstly, the effect of roll shifting strategy on wear contour was investigated by mtmerical simulation, and two evaluation indexes including edge smoothness and body smoothness of wear contours were introduced. Secondly, the edge smoothness average and body smoothness average of all the strips in a rolling campaign were selected as objective functions, and shifting control parameters as decision variables, the multi-objective method of MODE/D as the optimizer, and then a simulation-based multi-objective optimization model for roll shifting strategy was built. The experimental result shows that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to roll shifting strategy. Moreover, the conflicting relationship between two objectives can also be found, which indicates another advantage of multi-objective optimization. Finally, industrial test confirms the feasibility of the multi-objective approach for roll shifting strategy, and it can improve strip profile and extend same width rolling miles of a rolling campaign from 35 km to 70 km.展开更多
A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective ...A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective differential evolution algorithm based on decomposition (MODE/D). The two-objective and three-objective optimization experiments were performed respectively to demonstrate the optimal solutions of trade-off. The simulation results show that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to draft scheduling. The extreme Pareto solutions are found feasible and the centres of the Pareto fronts give a good compromise. The conflict exists between each two ones of three objectives. The final optimal solution is selected from the Pareto-optimal front by the importance of objectives, and it can achieve a better performance in all objective dimensions than the empirical solutions. Finally, the practical application cases confirm the feasibility of the multi-objective approach, and the optimal solutions can gain a better rolling stability than the empirical solutions, and strip flatness decreases from (0± 63) IU to (0±45) IU in industrial production.展开更多
The aim of this research was to examine the influence of vanadium on the structure, hardness and tensile strength of X I60CrMo 12-1 self-hardened steels. It is known that vanadium affects the process of solidification...The aim of this research was to examine the influence of vanadium on the structure, hardness and tensile strength of X I60CrMo 12-1 self-hardened steels. It is known that vanadium affects the process of solidification of this alloy in a way that narrows temperature interval of crystallization. Vanadium, as an alloying element, moves liquidus and solidus lines toward higher temperatures, approximately for 25 to 30 ~C. In addition, vanadium forms V6C5 carbides, which, are partly distributed between present phases in the steel; carbide (Cr,Fe)7C3 and austenite. The presence of vanadium enables the formation of (Cr, Fe)23C6 carbide and its precipitation into austenite during the cooling process. In local areas around fine carbide particles, austenite is transformed into martensite, i.e., vanadium reduces remained austenite and improves steel air-hardening. Vanadium concentration over 2.5% significantly improves the impact toughness. The basic problem in the application of high alloyed Cr-Mo steels is to increase their impact toughness and thereby sustain a relatively high value of hardness. Recent studies, concerning to the chemical composition and heat treatment regime, show that it is possible to get a martensitic structure with a very small amount of retained austenite. Investigations are directed toward the testing of the influence of alloying elements such as molybdenum, manganese and especially vanadium. Vanadium has great influence to the crystallization process. With increasing of its content, the eutectic point moves toward lower carbon concentrations and the temperature interval of solidification is narrowing.展开更多
The hydration and mechanical properties of Portland cement blended with low-CaO steel slag were studied and reported. The steel slag was used to replace cement up to 30% and then blended cement powder, paste and morta...The hydration and mechanical properties of Portland cement blended with low-CaO steel slag were studied and reported. The steel slag was used to replace cement up to 30% and then blended cement powder, paste and mortar samples prepared for the experiment. The quantitative analysis of XRD shows that ettringite formation is greatly reduced by incorporation of steel slag but there was a relatively low reduction of portlandite. Thermal analysis by TG shows that slag injection reduced portlandite content in the cement by at least 50%. Generally, the slag cement pastes required less water to form a workable paste compared to the reference cement, reducing as the slag content was increased. However, the setting times were higher than the reference. The permeability of the blended cement samples were lower than the control. The incorporation of 5% slag could not have an effect on the compressive strength of the concrete. The results confirmed that whilst cements with up to 15% slag content satisfied the strength requirements of class 42.5 N and those containing 20%-30% produce Class 32.5R cement.展开更多
Wind energy is a clean and renewable energy for which technology has developed rapidly in recent years.Wind turbines are commonly supported on tubular steel towers.As the turbine size is growing and the towers are ris...Wind energy is a clean and renewable energy for which technology has developed rapidly in recent years.Wind turbines are commonly supported on tubular steel towers.As the turbine size is growing and the towers are rising in height,steel towers are required to be sufficiently strong and stiff,consequently leading to high construction costs.To tackle this problem,a new type of prestressed concrete tower was designed employing a novel tower concept having a regular octagon cross section with interior ribs on each side,which was optimized by comparing the natural frequency and stress difference under the same lateral load in different directions of the tower.The designed tower features a tapered profile that reduces the area subjected to wind;the tapered profile reduces the total weight,applied moment and the capital cost.An optimization method was developed employing ABAQUS software and a genetic algorithm.A target function was defined on the basis of the minimum cost of the concrete and prestressed tendon used,and constraints were applied by accounting for the stress,displacements and natural frequency of the tower.Employing the method,a 100 m prestressed concrete tower system for a 5 MW turbine was optimized and designed under wind and earthquake loads.The paper also reports a systematic design procedure incorporating the finite element method and the optimization method for the prestressed concrete wind-turbine towers.展开更多
Distortion often appears at the corners of heavy turbine blade castings during heat treatment processes, so a great machining allowance is generally set in production which directly results in cost increase. In this p...Distortion often appears at the corners of heavy turbine blade castings during heat treatment processes, so a great machining allowance is generally set in production which directly results in cost increase. In this paper, a novel real-time measuring technology is developed for non-contact measuring the deformation behavior of heavy steel castings in heat treatment process. It was employed to measure the distortion and the temperature field of a batch of heavy turbine blade castings at cooling stage in normalizing process. Three inflection points appear in the distortion-time curves, and the residual distortion is affected by the regional area of not finished martensite transformation when the second inflection point appears. When the mean air temperature falls into the range of 10℃-20℃, the residual distortion is small; when it is lower than 10℃, positive distortion appears; when it is higher than 20℃, negative distortion appears. The distortion varies with seasonal temperature, which is directly responsible for the great machining allowance given in production.展开更多
基金Project(50274073) supported by the National Natural Science Foundation of China project(Metallurgy 2003, CRDPJ 210038) supported by Natural Sciences and Engineering Research Council of Canada
文摘The heating and melting mechanisms of the pellets immersed in liquid slag were investigated, and the effect of the pellet heating and the melting conditions were studied. The results show that the dust component in the pellet is melted from the surface and no metallic elements are melted before the dust component, the time for the pellet completely melted is reduced as the iron powder content increases since the metallic iron has high thermal conductivity. These are four stages of heating and melting of pellet in liquid slag, they are the growth and melt of solid slag shell, penetration of liquid slag, dissolving of dust component and melting of reduced metals. The lifetime of the solid slag shell is in the range of 7-16 s and increasing the pre-heating temperature of the pellet and the slag temperature can shorten the slag shell lifetime. The time for the dust component in the pellet to be melted completely is in the range of 20-45 s and increasing the pre-heating temperature, especially in the range of 600-800 ℃, can obviously reduce the melting time. A higher slag temperature can also improve the pellet melting and the melting time is reduced by 10-15 s when the slag temperature is increased from 1 450 to 1 550 ℃. The pellet with higher content of iron powder is beneficial to the melting by improving the heat conductivity.
文摘The restoration mechanisms for static recrystallization of work-hardened austenite were investigated by using double-pass compression tests performed on medium-carbon steel containing chromium and molybdenum. The softening fraction was defined by 2% offset method. The results show that Avrami exponent of about 0.21 is insensitive to deformation temperature, indicating that the action of steel grade should be considered. The time of 50% recrystallization (t0.5) decreases noteworthily with the increase of deformation temperature. Apparent activation energy for static recrystallization of 195 kJ/mol, which is close to that of vanadium microalloyed steel, is obtained by calculating. The increasing trend of the driving force for recrystallization is opposite to that of the deformation temperature, which is attributed to the number of operative slip system increasing as temperature increasing.
基金Projects(50974039,50634030) supported by the National Natural Science Foundation of China
文摘A simulation-based multi-objective optimization approach for roll shifting strategy in hot strip mills was presented. Firstly, the effect of roll shifting strategy on wear contour was investigated by mtmerical simulation, and two evaluation indexes including edge smoothness and body smoothness of wear contours were introduced. Secondly, the edge smoothness average and body smoothness average of all the strips in a rolling campaign were selected as objective functions, and shifting control parameters as decision variables, the multi-objective method of MODE/D as the optimizer, and then a simulation-based multi-objective optimization model for roll shifting strategy was built. The experimental result shows that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to roll shifting strategy. Moreover, the conflicting relationship between two objectives can also be found, which indicates another advantage of multi-objective optimization. Finally, industrial test confirms the feasibility of the multi-objective approach for roll shifting strategy, and it can improve strip profile and extend same width rolling miles of a rolling campaign from 35 km to 70 km.
基金Projects(50974039,50634030)supported by the National Natural Science Foundation of China
文摘A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective differential evolution algorithm based on decomposition (MODE/D). The two-objective and three-objective optimization experiments were performed respectively to demonstrate the optimal solutions of trade-off. The simulation results show that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to draft scheduling. The extreme Pareto solutions are found feasible and the centres of the Pareto fronts give a good compromise. The conflict exists between each two ones of three objectives. The final optimal solution is selected from the Pareto-optimal front by the importance of objectives, and it can achieve a better performance in all objective dimensions than the empirical solutions. Finally, the practical application cases confirm the feasibility of the multi-objective approach, and the optimal solutions can gain a better rolling stability than the empirical solutions, and strip flatness decreases from (0± 63) IU to (0±45) IU in industrial production.
文摘The aim of this research was to examine the influence of vanadium on the structure, hardness and tensile strength of X I60CrMo 12-1 self-hardened steels. It is known that vanadium affects the process of solidification of this alloy in a way that narrows temperature interval of crystallization. Vanadium, as an alloying element, moves liquidus and solidus lines toward higher temperatures, approximately for 25 to 30 ~C. In addition, vanadium forms V6C5 carbides, which, are partly distributed between present phases in the steel; carbide (Cr,Fe)7C3 and austenite. The presence of vanadium enables the formation of (Cr, Fe)23C6 carbide and its precipitation into austenite during the cooling process. In local areas around fine carbide particles, austenite is transformed into martensite, i.e., vanadium reduces remained austenite and improves steel air-hardening. Vanadium concentration over 2.5% significantly improves the impact toughness. The basic problem in the application of high alloyed Cr-Mo steels is to increase their impact toughness and thereby sustain a relatively high value of hardness. Recent studies, concerning to the chemical composition and heat treatment regime, show that it is possible to get a martensitic structure with a very small amount of retained austenite. Investigations are directed toward the testing of the influence of alloying elements such as molybdenum, manganese and especially vanadium. Vanadium has great influence to the crystallization process. With increasing of its content, the eutectic point moves toward lower carbon concentrations and the temperature interval of solidification is narrowing.
文摘The hydration and mechanical properties of Portland cement blended with low-CaO steel slag were studied and reported. The steel slag was used to replace cement up to 30% and then blended cement powder, paste and mortar samples prepared for the experiment. The quantitative analysis of XRD shows that ettringite formation is greatly reduced by incorporation of steel slag but there was a relatively low reduction of portlandite. Thermal analysis by TG shows that slag injection reduced portlandite content in the cement by at least 50%. Generally, the slag cement pastes required less water to form a workable paste compared to the reference cement, reducing as the slag content was increased. However, the setting times were higher than the reference. The permeability of the blended cement samples were lower than the control. The incorporation of 5% slag could not have an effect on the compressive strength of the concrete. The results confirmed that whilst cements with up to 15% slag content satisfied the strength requirements of class 42.5 N and those containing 20%-30% produce Class 32.5R cement.
基金supported by the National Natural Science Foundation of China(Grant No.51078231)
文摘Wind energy is a clean and renewable energy for which technology has developed rapidly in recent years.Wind turbines are commonly supported on tubular steel towers.As the turbine size is growing and the towers are rising in height,steel towers are required to be sufficiently strong and stiff,consequently leading to high construction costs.To tackle this problem,a new type of prestressed concrete tower was designed employing a novel tower concept having a regular octagon cross section with interior ribs on each side,which was optimized by comparing the natural frequency and stress difference under the same lateral load in different directions of the tower.The designed tower features a tapered profile that reduces the area subjected to wind;the tapered profile reduces the total weight,applied moment and the capital cost.An optimization method was developed employing ABAQUS software and a genetic algorithm.A target function was defined on the basis of the minimum cost of the concrete and prestressed tendon used,and constraints were applied by accounting for the stress,displacements and natural frequency of the tower.Employing the method,a 100 m prestressed concrete tower system for a 5 MW turbine was optimized and designed under wind and earthquake loads.The paper also reports a systematic design procedure incorporating the finite element method and the optimization method for the prestressed concrete wind-turbine towers.
基金supported by the National Eleventh Five-Year Science and Technology Support Program of China (Grant No.2007BAF02B02)the Major Projects of Ministry of Science of China (Grant No.2009ZX04014-082)
文摘Distortion often appears at the corners of heavy turbine blade castings during heat treatment processes, so a great machining allowance is generally set in production which directly results in cost increase. In this paper, a novel real-time measuring technology is developed for non-contact measuring the deformation behavior of heavy steel castings in heat treatment process. It was employed to measure the distortion and the temperature field of a batch of heavy turbine blade castings at cooling stage in normalizing process. Three inflection points appear in the distortion-time curves, and the residual distortion is affected by the regional area of not finished martensite transformation when the second inflection point appears. When the mean air temperature falls into the range of 10℃-20℃, the residual distortion is small; when it is lower than 10℃, positive distortion appears; when it is higher than 20℃, negative distortion appears. The distortion varies with seasonal temperature, which is directly responsible for the great machining allowance given in production.