Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Fa...Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Facture surfaces of the coated steels were inspected under SEM.Experimental results indicate that the ultimate tensile strength and ductility of the Al-Si coated boron steel are lower than those of the uncoated steel under test conditions.Extensive cracks occur in the coating after tensile tests;the width and density of cracks are sensitive to the deformation temperatures and strain rates.The bare substrate exposed between the separate coating segments is oxidized.Appearance of the oxide degrades the Al-Si coating adhesion.Remarkable difference between formability of the coating layer and the substrate is confirmed.The formability of the Al-Si coating could be optimized by controlling the phase transformation of the ductile Fe-rich intermetallic compounds within it during the austenization.展开更多
For elucidating applicability of FSM (field signature method) on detection of fatigue crack initiation and monitoring of its propagation, a series of fatigue tests on steel plate decks (4,625 × 2,250 mm^2) st...For elucidating applicability of FSM (field signature method) on detection of fatigue crack initiation and monitoring of its propagation, a series of fatigue tests on steel plate decks (4,625 × 2,250 mm^2) stiffened in lattice-shape by longitudinal and lateral ribs was carried out by using a wheel load traveling test machine. The fatigue crack was observed by visual inspection at the weld toe between the deck plate and the longitudinal rib when the number of wheel load traveling repetition was around 210 thousands. The response of FSM-monitoring, which was the potential difference change between the sensing pins (pair), became clear when the number of the repetition was around 190 thousands. The fatigue crack initiation could be detected by FSM considerably earlier than visual inspection. The fatigue crack propagation such as the direction could also be monitored even though the distance of the sensing pins was extended to 230 mm. On the other hand, the electric field analysis for the virgin situation without any cracks was carried out. The results of analysis indicated that 60 mm length of crack which could not be confirmed by visual inspection could be detected by FSM.展开更多
Estimating the cracking capacity of the face slab and recommending effective crack-control measures are important for the anti-seismic safety of concrete-faced rockfill dams(CFRDs). In this paper, two-dimensional anal...Estimating the cracking capacity of the face slab and recommending effective crack-control measures are important for the anti-seismic safety of concrete-faced rockfill dams(CFRDs). In this paper, two-dimensional analyses of CFRDs are performed to simulate the seismic cracking behavior of conventional reinforced concrete(RC) face slab and a type of composite face slab. The composite face slab is composed of a ductile fiber-reinforced cement-based composite(DFRCC) layer and an RC substrate. For this purpose, a co-axial rotating smeared crack model for concrete and DFRCC is coupled with the generalized plasticity model for the rockfill material, and then implemented in a finite element program. The results show that during strong earthquakes,an RC slab is more likely to develop a penetrating macro-crack in its thickness dimension. In contrast, the crack-controlling composite slab demonstrates excellent resistance to seismic cracking, and no penetrating macro-cracks are observed. Major harmful cracks that form in the concrete substrate are stopped by the DFRCC layer in composite slabs.展开更多
基金Project (51275185) supported by the National Natural Science Foundation of China
文摘Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Facture surfaces of the coated steels were inspected under SEM.Experimental results indicate that the ultimate tensile strength and ductility of the Al-Si coated boron steel are lower than those of the uncoated steel under test conditions.Extensive cracks occur in the coating after tensile tests;the width and density of cracks are sensitive to the deformation temperatures and strain rates.The bare substrate exposed between the separate coating segments is oxidized.Appearance of the oxide degrades the Al-Si coating adhesion.Remarkable difference between formability of the coating layer and the substrate is confirmed.The formability of the Al-Si coating could be optimized by controlling the phase transformation of the ductile Fe-rich intermetallic compounds within it during the austenization.
文摘For elucidating applicability of FSM (field signature method) on detection of fatigue crack initiation and monitoring of its propagation, a series of fatigue tests on steel plate decks (4,625 × 2,250 mm^2) stiffened in lattice-shape by longitudinal and lateral ribs was carried out by using a wheel load traveling test machine. The fatigue crack was observed by visual inspection at the weld toe between the deck plate and the longitudinal rib when the number of wheel load traveling repetition was around 210 thousands. The response of FSM-monitoring, which was the potential difference change between the sensing pins (pair), became clear when the number of the repetition was around 190 thousands. The fatigue crack initiation could be detected by FSM considerably earlier than visual inspection. The fatigue crack propagation such as the direction could also be monitored even though the distance of the sensing pins was extended to 230 mm. On the other hand, the electric field analysis for the virgin situation without any cracks was carried out. The results of analysis indicated that 60 mm length of crack which could not be confirmed by visual inspection could be detected by FSM.
基金supported by the National Natural Science Foundation of China(Grant Nos.51379028,51421064&51279025)
文摘Estimating the cracking capacity of the face slab and recommending effective crack-control measures are important for the anti-seismic safety of concrete-faced rockfill dams(CFRDs). In this paper, two-dimensional analyses of CFRDs are performed to simulate the seismic cracking behavior of conventional reinforced concrete(RC) face slab and a type of composite face slab. The composite face slab is composed of a ductile fiber-reinforced cement-based composite(DFRCC) layer and an RC substrate. For this purpose, a co-axial rotating smeared crack model for concrete and DFRCC is coupled with the generalized plasticity model for the rockfill material, and then implemented in a finite element program. The results show that during strong earthquakes,an RC slab is more likely to develop a penetrating macro-crack in its thickness dimension. In contrast, the crack-controlling composite slab demonstrates excellent resistance to seismic cracking, and no penetrating macro-cracks are observed. Major harmful cracks that form in the concrete substrate are stopped by the DFRCC layer in composite slabs.