针对钢渣体积稳定性差、钢渣-沥青混合料道路过早开裂的问题,采用二氧化硅胶体溶液对钢渣进行浸泡改性处理,通过力学性能测试、扫描电子显微镜(scanning electron microscope,SEM)检测、路用性能测试等方法研究了改性钢渣的物理力学性...针对钢渣体积稳定性差、钢渣-沥青混合料道路过早开裂的问题,采用二氧化硅胶体溶液对钢渣进行浸泡改性处理,通过力学性能测试、扫描电子显微镜(scanning electron microscope,SEM)检测、路用性能测试等方法研究了改性钢渣的物理力学性能、改性钢渣-沥青混合料的性能和钢渣的改性机理,并引入灰靶理论决策方法,综合改性钢渣-沥青混合料的各项性能指标,确定钢渣的最佳改性方案。结果表明:钢渣改性后,物理力学性能明显提高;钢渣的改性浓度越大,沥青混合料的高温性能越佳;延长钢渣的改性时间,沥青混合料的低温抗裂性能提高;且钢渣改性之后,沥青混合料的水稳定性能显著提高。基于灰靶决策理论,最终确定钢渣的最佳改性方案是在改性浓度(溶液质量分数)为3%的溶液下浸泡24 h。展开更多
文摘针对钢渣体积稳定性差、钢渣-沥青混合料道路过早开裂的问题,采用二氧化硅胶体溶液对钢渣进行浸泡改性处理,通过力学性能测试、扫描电子显微镜(scanning electron microscope,SEM)检测、路用性能测试等方法研究了改性钢渣的物理力学性能、改性钢渣-沥青混合料的性能和钢渣的改性机理,并引入灰靶理论决策方法,综合改性钢渣-沥青混合料的各项性能指标,确定钢渣的最佳改性方案。结果表明:钢渣改性后,物理力学性能明显提高;钢渣的改性浓度越大,沥青混合料的高温性能越佳;延长钢渣的改性时间,沥青混合料的低温抗裂性能提高;且钢渣改性之后,沥青混合料的水稳定性能显著提高。基于灰靶决策理论,最终确定钢渣的最佳改性方案是在改性浓度(溶液质量分数)为3%的溶液下浸泡24 h。