The effects of strain and chloride concentration on pitting susceptibility for type 304 stainless steel were studied in situ using the electrochemical technology under constant strain. The impact factor fc was brought...The effects of strain and chloride concentration on pitting susceptibility for type 304 stainless steel were studied in situ using the electrochemical technology under constant strain. The impact factor fc was brought forward to value the effect of strain on pitting. The pitting behaviors of type 304 stainless steel in various chloride concentrations under the strain levels 0%, 10%, and 30% were investigated. Potentiostatic polarization technology was used to study how the chloride concentration affected corrosion current density. The results indicated that fc increased substantially and pitting potential varied remarkably when chloride concentration was over 90 mg.L . Under the three levels of strain mentioned above, when chloride concentration was below 463 mg.L^-1,121 mg.L^-1, and 98 mg.L^-1 respectively, the pitting potential shifted towards positivity and, the passive film became more stable. When the strain was below 10%, the pitting susceptibility of type 304 stainless steel varied greatly as strain increased, whereas the susceptibility only changed a little when the strain was over 10%.展开更多
The corrosion behaviors and electrochemical properties of Q235 A steel in the treated water containing corrosive halide anions(F-, Cl-) have been investigated with corrosion tests of static coupon and dynamic coupon t...The corrosion behaviors and electrochemical properties of Q235 A steel in the treated water containing corrosive halide anions(F-, Cl-) have been investigated with corrosion tests of static coupon and dynamic coupon testing, electrochemical measurement of open-circuit potential and linear sweep voltammetry. The results reveal that the existence of F-and Cl-ions in the simulated treated water accelerate the corrosion rate of Q235 A steel. The corrosion rate reaches maximum with F-concentration of 50 mg/L, Cl-concentration of 200 mg/L, respectively. However, Q235 A steel would passivate when an applied potential is added to the system. Meanwhile, the initiating passive potential becomes positive with F-, Cl-concentration increasing. There is a little influence of F-, Cl-concentration on the initiating passivation current density. Therefore, it is necessary to control F-, Cl-concentration in the treated water when it is recycled by the pipelines made of Q235 A steel.展开更多
The effects of chloride,sulfate and carbonate anions on stress corrosion behaviors of ultra-high strength steel 23Co14Ni12Cr3Mo were studied by stress corrosion cracking(SCC)test method using double cantilever beam(DC...The effects of chloride,sulfate and carbonate anions on stress corrosion behaviors of ultra-high strength steel 23Co14Ni12Cr3Mo were studied by stress corrosion cracking(SCC)test method using double cantilever beam(DCB)specimens.The SCC morphology was observed by using scanning electron microscopy(SEM)and the composition of corrosion products was analyzed by using energy dispersive spectrometer(EDS).The results show that the crack propagates to bifurcation in NaCl and Na2SO4 solution,while the crack in Na2CO3 solution propagates along the load direction.The SCC rate in NaCl solution is the highest,while lower in Na2SO4 solution and little in Na2CO3 solution.From the SEM morphologies,quasi-cleavage fracture was observed in NaCl and Na2SO4 solutions,but intergranular features in Na2CO3 solution.The mechanism of anion effect on SCC of steel 23Co14Ni12Cr3Mo was studied by using full immersion test and electrochemical measurements.展开更多
High-speed steel W18Cr4V is commonly used in industries such as blade and mould manufacturers because of its high level of hardness and toughness, M-hardness and resistance, Ion implantation is an effective method to ...High-speed steel W18Cr4V is commonly used in industries such as blade and mould manufacturers because of its high level of hardness and toughness, M-hardness and resistance, Ion implantation is an effective method to improve the wear resistance of W18Cr4V. In our investigation, Ta and Ta+N ion implantation was performed on W18Cr4V high-speed steel. The surface properties after implantation were evaluated by measuring friction coefficients while the cabonyl phase of the surface was analyzed by X-ray diffraction analysis. It was found that the friction coefficients of the treated samples were much lower. Samples implanted with Ta+N had a lower friction coefficients than samples implanted only with Ta. This can be attributed to the formation of a new chemical compound, Fe7Ta3, on both surfaces. An even harder chemical compound, FerN, was formed on both surfaces of Ta+N implanted samples.展开更多
A laser lap welding process for zinc-coated steel has a well-known unsolved problem-porosity formation. The boiling temperature of coated zinc is lower than the melting temperature of the base metal, which is steel. I...A laser lap welding process for zinc-coated steel has a well-known unsolved problem-porosity formation. The boiling temperature of coated zinc is lower than the melting temperature of the base metal, which is steel. In the autogenous laser welding, the zinc vapor generates from the lapped surfaces expels the molten pool and the expulsion causes numerous weld defects, such as spatters and blow holes on the weld surface and porosity inside the welds. The laser-arc hybrid welding was suggested as an alternative method for the laser lap welding because the arc can preheat or post-beat the weldment according to the arrangement of the laser beam and the arc. CO2 laser-micro plasma hybrid welding was applied to the lap welding of zinc-coated steel with zero-gap. The relationships among the weld quality and process parameters of the laser-arc arrangement, and the laser-arc interspacing distance and arc current were investigated using a full-factorial experimental design. The effect of laser-arc arrangement is dominant because the leading plasma arc partially melts the upper steel sheets and vaporizes or oxidizes the coated zinc on the lapped surfaces. Compared with the result from the laser-TIG hybrid welding, the heat input from arc can be reduced by 40%.展开更多
A reliability-based quantitative durability design methodology is presented for reinforced concrete(RC)structures in the marine environment on the basis of natural exposure data derived from four berths(1.5,1.5,4 and ...A reliability-based quantitative durability design methodology is presented for reinforced concrete(RC)structures in the marine environment on the basis of natural exposure data derived from four berths(1.5,1.5,4 and 15 years)of a concrete port.More than 200 chloride profiles are obtained and analyzed.The relationship between nominal surface chloride ion concentration and altitude is discussed.Subsequently,the formula of the apparent chloride diffusion coefficient is proposed with consideration of the surrounding temperature,sodium chloride solution concentration,age factor and altitude.Then,the reliability-based method to predict the durability of RC structures is developed according to Fick s second law.Relationships between the predicted penetration depth of the chloride ion,the ratio of the wetting time per-period and the corresponding altitude are discussed.Subsequently,the environmental zonation methodology is established for concrete structures under a marine chloride environment by considering the ratio of the wetting time per-period of concrete as the zoning index.Finally,the corres-ponding durability design method for each zone level is established,which contains the durability design regulations of the specimen,and correction coefficients for different water/binder ratios,ages,temperatures and chloride ion concentrations.展开更多
Micro plasma arc surface melting of 0Cr19Ni9 shielded metal arc welding joint with a micro plasma arc welder produced a thin surface melted layer with a refined microstructure. The surface treatment changed the anod...Micro plasma arc surface melting of 0Cr19Ni9 shielded metal arc welding joint with a micro plasma arc welder produced a thin surface melted layer with a refined microstructure. The surface treatment changed the anodic polarization behavior in 0.5 mol/L H 2SO 4 solution. The polarization tests showed that for the as welded joint both the heat affected zone and the weld metal decreased in resistance to corrosion compared with the as received parent material while for the micro plasma arc surface melted joint the corrosion resistance increased significantly. This increase in corrosion resistance is attributed to the rapid solidification of the melted layer. Rapid solidification of the melted layer refines its microstructure, decreases its microsegregation, and inhibits the precipitation of chromium carbides at the grain boundaries.展开更多
In order to improve the bioactivity of 316L stainless steel,a titanium layer was prepared on the surface of 316L by laser cladding(LC),followed by plasma electrolytic oxidation(PEO)to form a porous ceramic coating on ...In order to improve the bioactivity of 316L stainless steel,a titanium layer was prepared on the surface of 316L by laser cladding(LC),followed by plasma electrolytic oxidation(PEO)to form a porous ceramic coating on titanium layer.The morphologies,microstructure and compositions of the coated samples were characterized by 3D surface profiler,SEM,EDS,XRD and XPS.The corrosion resistance and bioactivity of the coatings were evaluated by potentiodynamic polarization and immersion test in simulated body fluid(SBF),respectively.The results showed that the porous ceramic coating mainly consisted of anatase and rutile,and highly crystalline HA was also detected.The main elements of the PEO coating are Ca,P,Ti and O.The LC+PEO composite bio-coating has more excellent corrosion resistance than the 316L substrate in simulated body fluid.Furthermore,the composite coating could effectively improve the bioactivity of 316L stainless steel.展开更多
To examine the protection against reinforcement corrosion due to the combined action of CO2 and chlorides, experimental results of the evaluation of a study with three types of cement are presented. The study was perf...To examine the protection against reinforcement corrosion due to the combined action of CO2 and chlorides, experimental results of the evaluation of a study with three types of cement are presented. The study was performed observing the behavior of reinforcements which were put in samples submitted to accelerated carbonatation tests and accelerated tests under the effect of chlorides. For the evaluation, intensity corrosion measurements were used using the Pr (polarization resistance) technique, employing these measures as a deterioration indicator. Three types of cement available in the national market were used. The obtained results enabled the classification of the used cements, comparing their profile behaviors in the conditions of the proposed tests.展开更多
The influence of the ratio and content of emulsifiers on the stability of anion emulsions for cold strip rolling was investigated in this paper. The present study also investigated the effects of HLB (hydrophile-lipo...The influence of the ratio and content of emulsifiers on the stability of anion emulsions for cold strip rolling was investigated in this paper. The present study also investigated the effects of HLB (hydrophile-lipophile balance) value and emulsifier content on the stability of no-ionic emulsions. Based on the effects of different stabilities and different concentrations of emulsions on the adsorptivity and friction coefficients, good lubricating performance was obtained when the amount of the separated oil and soap (SOS) accounted for 2.5%. The wearing scar of the steel balls also indicated the improvements in tribological properties after using the emulsion. Thus, the preparation of emulsion should be regulated according to different rolling conditions.展开更多
In the work, we studied the effect of the plasma of a runaway electron preionized (REP) diffuse discharge (DD) on the composition, structure, and properties of ST3PS steel surface layers. Voltage pulses with an in...In the work, we studied the effect of the plasma of a runaway electron preionized (REP) diffuse discharge (DD) on the composition, structure, and properties of ST3PS steel surface layers. Voltage pulses with an incident wave amplitude of up to 30 kV, FWHM of around 4 ns, and rise time of around 2.5 ns were applied to the gap in an inhomogeneous electric field. The ST3PS steel specimens exposed to this type of discharge revealed changes in their defect subsystem, suggesting that the runaway electron preionized diffuse discharge provides surface hardening of the steel.展开更多
A series of functionalized ionic liquids (ILs) containing ester-group were synthesized and their tribological prop- erties as lubricants for steel-steel contact were studied and compared with a non-functionalized io...A series of functionalized ionic liquids (ILs) containing ester-group were synthesized and their tribological prop- erties as lubricants for steel-steel contact were studied and compared with a non-functionalized ionic liquid and perfluo- ropolyethers (PFPE). The morphology and chemical composition of the worn scars were analyzed by scanning electron mi- croscopy and X-ray photoelectron spectroscopy, respectively, and the possible lubrication mechanism of ILs was discussed. As a result, all ILs demonstrated a better lubricity and a much higher load-carrying capacity than PFPE used as lubricants for the steel-steel tribomates system. The functionalized ILs with ester-group showed slightly worse friction reducing abil- ity than their nonfunctionalized counterparts at relatively lower loads owing to their higher viscosity, but then exhibited better antiwear ability because the ester group they contained had not only physical but also strong chemical reactions with the freshly exposed steel surface and formed chemical adsorption boundary films on the worn surface during friction pro- cess. Under high loads, some triboehemical reactions took place between the active elements, such as fluorine which were released from the ILs, and fresh metal surfaces of rubbing pairs to form the admixture reaction films, which were mainly composed of ferric fluoride mixed with ferric oxide, leading to lower friction coefficients and good wear resistance.展开更多
The scattering and resonance reactions of ^22Mg+p and ^22Mg+α play crucial roles for studying deeply not only in the structure of proton-rich nuclei of ^23A1 and ^26Si but also for the interest of astrophysics. It ...The scattering and resonance reactions of ^22Mg+p and ^22Mg+α play crucial roles for studying deeply not only in the structure of proton-rich nuclei of ^23A1 and ^26Si but also for the interest of astrophysics. It is believed that ^22Mg nucleus is a waiting point in the αp-process of nucleosynthesis in novae. We supposed to perform direct measurement the ^22Mg+α system in invert kinematics using radioactive ion (RI) beam. The ^22Mg beam of 3.73 MeV/u was produced at CRIB facility of the University of Tokyo located at RIKEN, Japan in 2011. In this paper, we report the results the scattering and resonance reactions with the alpha target. of the ^22Mg beam production used for the direct measurement of展开更多
Calcium sulfoaluminate cement(CSAC),first developed in China in the 1970 s,has received significant attention because of its expansive(or shrinkage-compensating)and rapid-hardening characteristics,low energy-intensity...Calcium sulfoaluminate cement(CSAC),first developed in China in the 1970 s,has received significant attention because of its expansive(or shrinkage-compensating)and rapid-hardening characteristics,low energy-intensity,and low carbon emissions.The production and hydration of CSAC(containing ye’elimite,belite,calcium sulfate,and minors)have been extensively studied,but aspects of its durability are not well understood.Due to its composition and intrinsic characteristics,CSAC concrete is expected to have better performance than Portland cement(PC)concrete in several aspects,including shrinkage and cracking due to restrained shrinkage,freeze-thaw damage,alkali-silica reaction,and sulfate attack.However,there is a lack of consensus among researchers regarding transport properties,resistance to carbonation,and steel corrosion protectiveness of CSAC concrete,all of which are expected to be tied to the chemical composition of CSAC and attributes of the service environments.For example,CASC concrete has poorer resistance to carbonation and chloride penetration compared with its PC counterpart,yet some studies have suggested that it protects steel rebar well from corrosion when exposed to a marine tidal zone,because of a strong self-desiccation effect.This paper presents a succinct review of studies of the durability of CSAC concrete.We suggest that more such studies should be conducted to examine the long-term performance of the material in different service environments.Special emphasis should be given to carbonation and steel rebar corrosion,so as to reveal the underlying deterioration mechanisms and establish means to improve the performance of CSAC concrete against such degradation processes.展开更多
As Reduced Activation Ferritic/Martensitic (RAFM) steel is considered the primary candidate for use as a structural material in fusion power reactors,many countries are developing different kinds of RAFM.China is deve...As Reduced Activation Ferritic/Martensitic (RAFM) steel is considered the primary candidate for use as a structural material in fusion power reactors,many countries are developing different kinds of RAFM.China is developing new CLAM (China Low Activation Martensitic) steel.The study investigates microstructural changes in CLAM steel implanted with deuterium ions induced by 1250 keV electron irradiation from R.T.to 873 K,and observes both the growth and shrinkage of the defect clusters produced by deuterium ion implantation under the electron irradiation.展开更多
文摘The effects of strain and chloride concentration on pitting susceptibility for type 304 stainless steel were studied in situ using the electrochemical technology under constant strain. The impact factor fc was brought forward to value the effect of strain on pitting. The pitting behaviors of type 304 stainless steel in various chloride concentrations under the strain levels 0%, 10%, and 30% were investigated. Potentiostatic polarization technology was used to study how the chloride concentration affected corrosion current density. The results indicated that fc increased substantially and pitting potential varied remarkably when chloride concentration was over 90 mg.L . Under the three levels of strain mentioned above, when chloride concentration was below 463 mg.L^-1,121 mg.L^-1, and 98 mg.L^-1 respectively, the pitting potential shifted towards positivity and, the passive film became more stable. When the strain was below 10%, the pitting susceptibility of type 304 stainless steel varied greatly as strain increased, whereas the susceptibility only changed a little when the strain was over 10%.
基金Project(2018YFC1900304)supported by the National Key R&D Program of ChinaProject(2018SK2026)supported by the Key R&D Program of Hunan Province,ChinaProject(2017SK2420)supported by the Science and Technology of Hunan Province,China。
文摘The corrosion behaviors and electrochemical properties of Q235 A steel in the treated water containing corrosive halide anions(F-, Cl-) have been investigated with corrosion tests of static coupon and dynamic coupon testing, electrochemical measurement of open-circuit potential and linear sweep voltammetry. The results reveal that the existence of F-and Cl-ions in the simulated treated water accelerate the corrosion rate of Q235 A steel. The corrosion rate reaches maximum with F-concentration of 50 mg/L, Cl-concentration of 200 mg/L, respectively. However, Q235 A steel would passivate when an applied potential is added to the system. Meanwhile, the initiating passive potential becomes positive with F-, Cl-concentration increasing. There is a little influence of F-, Cl-concentration on the initiating passivation current density. Therefore, it is necessary to control F-, Cl-concentration in the treated water when it is recycled by the pipelines made of Q235 A steel.
基金Project(51171011)supported by the National Science Foundation of China
文摘The effects of chloride,sulfate and carbonate anions on stress corrosion behaviors of ultra-high strength steel 23Co14Ni12Cr3Mo were studied by stress corrosion cracking(SCC)test method using double cantilever beam(DCB)specimens.The SCC morphology was observed by using scanning electron microscopy(SEM)and the composition of corrosion products was analyzed by using energy dispersive spectrometer(EDS).The results show that the crack propagates to bifurcation in NaCl and Na2SO4 solution,while the crack in Na2CO3 solution propagates along the load direction.The SCC rate in NaCl solution is the highest,while lower in Na2SO4 solution and little in Na2CO3 solution.From the SEM morphologies,quasi-cleavage fracture was observed in NaCl and Na2SO4 solutions,but intergranular features in Na2CO3 solution.The mechanism of anion effect on SCC of steel 23Co14Ni12Cr3Mo was studied by using full immersion test and electrochemical measurements.
文摘High-speed steel W18Cr4V is commonly used in industries such as blade and mould manufacturers because of its high level of hardness and toughness, M-hardness and resistance, Ion implantation is an effective method to improve the wear resistance of W18Cr4V. In our investigation, Ta and Ta+N ion implantation was performed on W18Cr4V high-speed steel. The surface properties after implantation were evaluated by measuring friction coefficients while the cabonyl phase of the surface was analyzed by X-ray diffraction analysis. It was found that the friction coefficients of the treated samples were much lower. Samples implanted with Ta+N had a lower friction coefficients than samples implanted only with Ta. This can be attributed to the formation of a new chemical compound, Fe7Ta3, on both surfaces. An even harder chemical compound, FerN, was formed on both surfaces of Ta+N implanted samples.
文摘A laser lap welding process for zinc-coated steel has a well-known unsolved problem-porosity formation. The boiling temperature of coated zinc is lower than the melting temperature of the base metal, which is steel. In the autogenous laser welding, the zinc vapor generates from the lapped surfaces expels the molten pool and the expulsion causes numerous weld defects, such as spatters and blow holes on the weld surface and porosity inside the welds. The laser-arc hybrid welding was suggested as an alternative method for the laser lap welding because the arc can preheat or post-beat the weldment according to the arrangement of the laser beam and the arc. CO2 laser-micro plasma hybrid welding was applied to the lap welding of zinc-coated steel with zero-gap. The relationships among the weld quality and process parameters of the laser-arc arrangement, and the laser-arc interspacing distance and arc current were investigated using a full-factorial experimental design. The effect of laser-arc arrangement is dominant because the leading plasma arc partially melts the upper steel sheets and vaporizes or oxidizes the coated zinc on the lapped surfaces. Compared with the result from the laser-TIG hybrid welding, the heat input from arc can be reduced by 40%.
基金The National Natural Science Foundation of China(No.51508162)
文摘A reliability-based quantitative durability design methodology is presented for reinforced concrete(RC)structures in the marine environment on the basis of natural exposure data derived from four berths(1.5,1.5,4 and 15 years)of a concrete port.More than 200 chloride profiles are obtained and analyzed.The relationship between nominal surface chloride ion concentration and altitude is discussed.Subsequently,the formula of the apparent chloride diffusion coefficient is proposed with consideration of the surrounding temperature,sodium chloride solution concentration,age factor and altitude.Then,the reliability-based method to predict the durability of RC structures is developed according to Fick s second law.Relationships between the predicted penetration depth of the chloride ion,the ratio of the wetting time per-period and the corresponding altitude are discussed.Subsequently,the environmental zonation methodology is established for concrete structures under a marine chloride environment by considering the ratio of the wetting time per-period of concrete as the zoning index.Finally,the corres-ponding durability design method for each zone level is established,which contains the durability design regulations of the specimen,and correction coefficients for different water/binder ratios,ages,temperatures and chloride ion concentrations.
文摘Micro plasma arc surface melting of 0Cr19Ni9 shielded metal arc welding joint with a micro plasma arc welder produced a thin surface melted layer with a refined microstructure. The surface treatment changed the anodic polarization behavior in 0.5 mol/L H 2SO 4 solution. The polarization tests showed that for the as welded joint both the heat affected zone and the weld metal decreased in resistance to corrosion compared with the as received parent material while for the micro plasma arc surface melted joint the corrosion resistance increased significantly. This increase in corrosion resistance is attributed to the rapid solidification of the melted layer. Rapid solidification of the melted layer refines its microstructure, decreases its microsegregation, and inhibits the precipitation of chromium carbides at the grain boundaries.
基金financial support from the National Natural Science Foundation of China (No. 51975533)National Safety Academic Fund, China (No. U2130122)Public Projects of Zhejiang Province, China (Nos. LGJ22E050002, LGJ20E050002)
文摘In order to improve the bioactivity of 316L stainless steel,a titanium layer was prepared on the surface of 316L by laser cladding(LC),followed by plasma electrolytic oxidation(PEO)to form a porous ceramic coating on titanium layer.The morphologies,microstructure and compositions of the coated samples were characterized by 3D surface profiler,SEM,EDS,XRD and XPS.The corrosion resistance and bioactivity of the coatings were evaluated by potentiodynamic polarization and immersion test in simulated body fluid(SBF),respectively.The results showed that the porous ceramic coating mainly consisted of anatase and rutile,and highly crystalline HA was also detected.The main elements of the PEO coating are Ca,P,Ti and O.The LC+PEO composite bio-coating has more excellent corrosion resistance than the 316L substrate in simulated body fluid.Furthermore,the composite coating could effectively improve the bioactivity of 316L stainless steel.
文摘To examine the protection against reinforcement corrosion due to the combined action of CO2 and chlorides, experimental results of the evaluation of a study with three types of cement are presented. The study was performed observing the behavior of reinforcements which were put in samples submitted to accelerated carbonatation tests and accelerated tests under the effect of chlorides. For the evaluation, intensity corrosion measurements were used using the Pr (polarization resistance) technique, employing these measures as a deterioration indicator. Three types of cement available in the national market were used. The obtained results enabled the classification of the used cements, comparing their profile behaviors in the conditions of the proposed tests.
基金supported by the National High-Tech Research and Development Program ("863"Program) of China(No.2009AA03Z 339)
文摘The influence of the ratio and content of emulsifiers on the stability of anion emulsions for cold strip rolling was investigated in this paper. The present study also investigated the effects of HLB (hydrophile-lipophile balance) value and emulsifier content on the stability of no-ionic emulsions. Based on the effects of different stabilities and different concentrations of emulsions on the adsorptivity and friction coefficients, good lubricating performance was obtained when the amount of the separated oil and soap (SOS) accounted for 2.5%. The wearing scar of the steel balls also indicated the improvements in tribological properties after using the emulsion. Thus, the preparation of emulsion should be regulated according to different rolling conditions.
文摘In the work, we studied the effect of the plasma of a runaway electron preionized (REP) diffuse discharge (DD) on the composition, structure, and properties of ST3PS steel surface layers. Voltage pulses with an incident wave amplitude of up to 30 kV, FWHM of around 4 ns, and rise time of around 2.5 ns were applied to the gap in an inhomogeneous electric field. The ST3PS steel specimens exposed to this type of discharge revealed changes in their defect subsystem, suggesting that the runaway electron preionized diffuse discharge provides surface hardening of the steel.
基金the Natural Science Foundation Project of CQ CSTC, 2010BB0201
文摘A series of functionalized ionic liquids (ILs) containing ester-group were synthesized and their tribological prop- erties as lubricants for steel-steel contact were studied and compared with a non-functionalized ionic liquid and perfluo- ropolyethers (PFPE). The morphology and chemical composition of the worn scars were analyzed by scanning electron mi- croscopy and X-ray photoelectron spectroscopy, respectively, and the possible lubrication mechanism of ILs was discussed. As a result, all ILs demonstrated a better lubricity and a much higher load-carrying capacity than PFPE used as lubricants for the steel-steel tribomates system. The functionalized ILs with ester-group showed slightly worse friction reducing abil- ity than their nonfunctionalized counterparts at relatively lower loads owing to their higher viscosity, but then exhibited better antiwear ability because the ester group they contained had not only physical but also strong chemical reactions with the freshly exposed steel surface and formed chemical adsorption boundary films on the worn surface during friction pro- cess. Under high loads, some triboehemical reactions took place between the active elements, such as fluorine which were released from the ILs, and fresh metal surfaces of rubbing pairs to form the admixture reaction films, which were mainly composed of ferric fluoride mixed with ferric oxide, leading to lower friction coefficients and good wear resistance.
文摘The scattering and resonance reactions of ^22Mg+p and ^22Mg+α play crucial roles for studying deeply not only in the structure of proton-rich nuclei of ^23A1 and ^26Si but also for the interest of astrophysics. It is believed that ^22Mg nucleus is a waiting point in the αp-process of nucleosynthesis in novae. We supposed to perform direct measurement the ^22Mg+α system in invert kinematics using radioactive ion (RI) beam. The ^22Mg beam of 3.73 MeV/u was produced at CRIB facility of the University of Tokyo located at RIKEN, Japan in 2011. In this paper, we report the results the scattering and resonance reactions with the alpha target. of the ^22Mg beam production used for the direct measurement of
基金the National Science Foundation of the United States(Nos.1932690 and 1761697)。
文摘Calcium sulfoaluminate cement(CSAC),first developed in China in the 1970 s,has received significant attention because of its expansive(or shrinkage-compensating)and rapid-hardening characteristics,low energy-intensity,and low carbon emissions.The production and hydration of CSAC(containing ye’elimite,belite,calcium sulfate,and minors)have been extensively studied,but aspects of its durability are not well understood.Due to its composition and intrinsic characteristics,CSAC concrete is expected to have better performance than Portland cement(PC)concrete in several aspects,including shrinkage and cracking due to restrained shrinkage,freeze-thaw damage,alkali-silica reaction,and sulfate attack.However,there is a lack of consensus among researchers regarding transport properties,resistance to carbonation,and steel corrosion protectiveness of CSAC concrete,all of which are expected to be tied to the chemical composition of CSAC and attributes of the service environments.For example,CASC concrete has poorer resistance to carbonation and chloride penetration compared with its PC counterpart,yet some studies have suggested that it protects steel rebar well from corrosion when exposed to a marine tidal zone,because of a strong self-desiccation effect.This paper presents a succinct review of studies of the durability of CSAC concrete.We suggest that more such studies should be conducted to examine the long-term performance of the material in different service environments.Special emphasis should be given to carbonation and steel rebar corrosion,so as to reveal the underlying deterioration mechanisms and establish means to improve the performance of CSAC concrete against such degradation processes.
基金supported by the National Natural Science Foundation of China (Grant Nos.50771017 and 50971030)the Program of National Basic Research Development Plan (Grant Nos.2008cb717802 and 2009GB109004)the China Scholarship Council and the CUP Program in Japan
文摘As Reduced Activation Ferritic/Martensitic (RAFM) steel is considered the primary candidate for use as a structural material in fusion power reactors,many countries are developing different kinds of RAFM.China is developing new CLAM (China Low Activation Martensitic) steel.The study investigates microstructural changes in CLAM steel implanted with deuterium ions induced by 1250 keV electron irradiation from R.T.to 873 K,and observes both the growth and shrinkage of the defect clusters produced by deuterium ion implantation under the electron irradiation.