Proposes a simplified finite element model for steel-concrete composite beams. The effects of slip can be taken into account by creating a special matrix of shear connector stiffness and using the iteration method. Me...Proposes a simplified finite element model for steel-concrete composite beams. The effects of slip can be taken into account by creating a special matrix of shear connector stiffness and using the iteration method. Meanwhile, the effect of material non-linearity of steel and concrete on rigidity and strength of composite beams is considered. With the age-adjusted effective modulus method, the analysis for the whole process of shrinkage and creep under long-term load can be performed. The ultimate load, deflection, stress and slip of continuous composite beams under short-term and long-term load are computed using the proposed finite element model. The numerical results are compared with the experimental results and existing values based on other numerical methods, and are found to be in good agreement.展开更多
A new concept of structurally dissipating rock-shed (SDR) was developed by the lab of Tonello IC and LOCIE-ESIGEC (France). To decide the dimension of the plate used in SDR, an ANSYS model which could simulate the imp...A new concept of structurally dissipating rock-shed (SDR) was developed by the lab of Tonello IC and LOCIE-ESIGEC (France). To decide the dimension of the plate used in SDR, an ANSYS model which could simulate the impact of rock in the centre of the plate was established by Fabien Delhomme. By using this model, some finite element analyses are carried out in the present paper. Firstly, a plate impacted by a block is numerically simulated, the numerical results obtained from different mesh sizes are compared and the accuracy of the finite element model is verified. Then, the dynamic response of the plate impacted at the boundary and in the medium part is computed. By analyzing the stress in rebar, the most dangerous region of impact of plate was found. For a rectangular plate, the most dangerous region is at the corner of the plate when a block drops in. Finally, the whole deformation process of the plate under dropping block was simulated and a simplified definition (effect zone) to describe the deformation process in different positions of plate was given. From this study, it is found that the impact only affects heavily within the effect zone.展开更多
The risk during construction and in the operation of the underground gas storage (UGS) was analyzed. One of most important risk which should be prevented is large deformation or destruction of the steel lining. The ...The risk during construction and in the operation of the underground gas storage (UGS) was analyzed. One of most important risk which should be prevented is large deformation or destruction of the steel lining. The specific deformation of the steel lining needs to be inside the acceptable value. This paper presents lined rock cavern (LRC) concept and specific deformations, which can occur under operation of underground gas storage. Analysis is performed with different (3D model and axis symmetrical) FEM models and analytical model. We made a comparison between analytical calculation and FEM calculation. Concrete wall is mechanically not regarded as reinforced concrete structure which means that concrete will crack. Finally, we determined the minimum value of Young's modulus, which satisfies the condition of maximum deformation of steel lining.展开更多
A finite element reconstruction algorithm for ultrasound tomography based on the Helmholtz equation in frequency domain is presented to monitor the grouting defects in reinforced concrete structures.In this algorithm,...A finite element reconstruction algorithm for ultrasound tomography based on the Helmholtz equation in frequency domain is presented to monitor the grouting defects in reinforced concrete structures.In this algorithm,a hybrid regularizations-based iterative Newton method is implemented to provide stable inverse solutions.Furthermore,a dual mesh scheme and an adjoint method are adopted to reduce the computation cost and improve the efficiency of reconstruction.Simultaneous reconstruction of both acoustic velocity and attenuation coefficient for a reinforced concrete model is achieved with multiple frequency data.The algorithm is evaluated with numerical simulation under various practical scenarios including varied transmission/receiving modes,different noise levels,different source/detector numbers,and different contrast levels between the heterogeneity and background region.Results obtained suggest that the algorithm is insensitive to noise,and the reconstructions are quantitatively accurate in terms of the location,size and acoustic properties of the target over a range of contrast levels.展开更多
It is a common method to strengthen the damaged RC structures with bonded steel plates. At present the ultimate bearing ca- pacity of RC structures strengthened with bonded steel plates is calculated mostly using the ...It is a common method to strengthen the damaged RC structures with bonded steel plates. At present the ultimate bearing ca- pacity of RC structures strengthened with bonded steel plates is calculated mostly using the theory based on the test. Four beams, including one reference beam, two strengthened concrete beams in primary force and secondary force respectively, and one strengthened concrete beam which was not anchored enough, were tested under four-point bending (4PB) in order to get the data of strain of longitudinal bars, bonded bottom steel plate in tension and deflection of beams in the middle span. The experimental program was supported by a three-dimensioned finite analysis using ABAQUS. At the end of experiments and finite analysis, it is concluded that the investing strengthening technique can significantly improve the load-carrying capacity and the phenomenon of stress concentration at the end of interface, as well as the damage at interface, can be well simulated with cohesive element provided by ABAQUS.展开更多
Estimating the cracking capacity of the face slab and recommending effective crack-control measures are important for the anti-seismic safety of concrete-faced rockfill dams(CFRDs). In this paper, two-dimensional anal...Estimating the cracking capacity of the face slab and recommending effective crack-control measures are important for the anti-seismic safety of concrete-faced rockfill dams(CFRDs). In this paper, two-dimensional analyses of CFRDs are performed to simulate the seismic cracking behavior of conventional reinforced concrete(RC) face slab and a type of composite face slab. The composite face slab is composed of a ductile fiber-reinforced cement-based composite(DFRCC) layer and an RC substrate. For this purpose, a co-axial rotating smeared crack model for concrete and DFRCC is coupled with the generalized plasticity model for the rockfill material, and then implemented in a finite element program. The results show that during strong earthquakes,an RC slab is more likely to develop a penetrating macro-crack in its thickness dimension. In contrast, the crack-controlling composite slab demonstrates excellent resistance to seismic cracking, and no penetrating macro-cracks are observed. Major harmful cracks that form in the concrete substrate are stopped by the DFRCC layer in composite slabs.展开更多
In order to analyze and simulate the impact collapse or seismic response of the reinforced concrete(RC)structures,a combined fiber beam model is proposed by dividing the cross section of RC beam into concrete fiber an...In order to analyze and simulate the impact collapse or seismic response of the reinforced concrete(RC)structures,a combined fiber beam model is proposed by dividing the cross section of RC beam into concrete fiber and steel fiber.The stress-strain relationship of concrete fiber is based on a model proposed by concrete codes for concrete structures.The stress-strain behavior of steel fiber is based on a model suggested by others.These constitutive models are implemented into a general finite element program ABAQUS through the user defined subroutines to provide effective computational tools for the inelastic analysis of RC frame structures.The fiber model proposed in this paper is validated by comparing with experiment data of the RC column under cyclical lateral loading.The damage evolution of a three-dimension frame subjected to impact loading is also investigated.展开更多
文摘Proposes a simplified finite element model for steel-concrete composite beams. The effects of slip can be taken into account by creating a special matrix of shear connector stiffness and using the iteration method. Meanwhile, the effect of material non-linearity of steel and concrete on rigidity and strength of composite beams is considered. With the age-adjusted effective modulus method, the analysis for the whole process of shrinkage and creep under long-term load can be performed. The ultimate load, deflection, stress and slip of continuous composite beams under short-term and long-term load are computed using the proposed finite element model. The numerical results are compared with the experimental results and existing values based on other numerical methods, and are found to be in good agreement.
文摘A new concept of structurally dissipating rock-shed (SDR) was developed by the lab of Tonello IC and LOCIE-ESIGEC (France). To decide the dimension of the plate used in SDR, an ANSYS model which could simulate the impact of rock in the centre of the plate was established by Fabien Delhomme. By using this model, some finite element analyses are carried out in the present paper. Firstly, a plate impacted by a block is numerically simulated, the numerical results obtained from different mesh sizes are compared and the accuracy of the finite element model is verified. Then, the dynamic response of the plate impacted at the boundary and in the medium part is computed. By analyzing the stress in rebar, the most dangerous region of impact of plate was found. For a rectangular plate, the most dangerous region is at the corner of the plate when a block drops in. Finally, the whole deformation process of the plate under dropping block was simulated and a simplified definition (effect zone) to describe the deformation process in different positions of plate was given. From this study, it is found that the impact only affects heavily within the effect zone.
文摘The risk during construction and in the operation of the underground gas storage (UGS) was analyzed. One of most important risk which should be prevented is large deformation or destruction of the steel lining. The specific deformation of the steel lining needs to be inside the acceptable value. This paper presents lined rock cavern (LRC) concept and specific deformations, which can occur under operation of underground gas storage. Analysis is performed with different (3D model and axis symmetrical) FEM models and analytical model. We made a comparison between analytical calculation and FEM calculation. Concrete wall is mechanically not regarded as reinforced concrete structure which means that concrete will crack. Finally, we determined the minimum value of Young's modulus, which satisfies the condition of maximum deformation of steel lining.
基金Project(31200748)supported by the National Natural Science Foundation of China
文摘A finite element reconstruction algorithm for ultrasound tomography based on the Helmholtz equation in frequency domain is presented to monitor the grouting defects in reinforced concrete structures.In this algorithm,a hybrid regularizations-based iterative Newton method is implemented to provide stable inverse solutions.Furthermore,a dual mesh scheme and an adjoint method are adopted to reduce the computation cost and improve the efficiency of reconstruction.Simultaneous reconstruction of both acoustic velocity and attenuation coefficient for a reinforced concrete model is achieved with multiple frequency data.The algorithm is evaluated with numerical simulation under various practical scenarios including varied transmission/receiving modes,different noise levels,different source/detector numbers,and different contrast levels between the heterogeneity and background region.Results obtained suggest that the algorithm is insensitive to noise,and the reconstructions are quantitatively accurate in terms of the location,size and acoustic properties of the target over a range of contrast levels.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11132003, 11002048, 10972072)the Special Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering at Hohai University (Grant Nos. 2011585912, 2009585912)
文摘It is a common method to strengthen the damaged RC structures with bonded steel plates. At present the ultimate bearing ca- pacity of RC structures strengthened with bonded steel plates is calculated mostly using the theory based on the test. Four beams, including one reference beam, two strengthened concrete beams in primary force and secondary force respectively, and one strengthened concrete beam which was not anchored enough, were tested under four-point bending (4PB) in order to get the data of strain of longitudinal bars, bonded bottom steel plate in tension and deflection of beams in the middle span. The experimental program was supported by a three-dimensioned finite analysis using ABAQUS. At the end of experiments and finite analysis, it is concluded that the investing strengthening technique can significantly improve the load-carrying capacity and the phenomenon of stress concentration at the end of interface, as well as the damage at interface, can be well simulated with cohesive element provided by ABAQUS.
基金supported by the National Natural Science Foundation of China(Grant Nos.51379028,51421064&51279025)
文摘Estimating the cracking capacity of the face slab and recommending effective crack-control measures are important for the anti-seismic safety of concrete-faced rockfill dams(CFRDs). In this paper, two-dimensional analyses of CFRDs are performed to simulate the seismic cracking behavior of conventional reinforced concrete(RC) face slab and a type of composite face slab. The composite face slab is composed of a ductile fiber-reinforced cement-based composite(DFRCC) layer and an RC substrate. For this purpose, a co-axial rotating smeared crack model for concrete and DFRCC is coupled with the generalized plasticity model for the rockfill material, and then implemented in a finite element program. The results show that during strong earthquakes,an RC slab is more likely to develop a penetrating macro-crack in its thickness dimension. In contrast, the crack-controlling composite slab demonstrates excellent resistance to seismic cracking, and no penetrating macro-cracks are observed. Major harmful cracks that form in the concrete substrate are stopped by the DFRCC layer in composite slabs.
基金supported by the National Natural Science Foundation of China(Grant No.90815026)
文摘In order to analyze and simulate the impact collapse or seismic response of the reinforced concrete(RC)structures,a combined fiber beam model is proposed by dividing the cross section of RC beam into concrete fiber and steel fiber.The stress-strain relationship of concrete fiber is based on a model proposed by concrete codes for concrete structures.The stress-strain behavior of steel fiber is based on a model suggested by others.These constitutive models are implemented into a general finite element program ABAQUS through the user defined subroutines to provide effective computational tools for the inelastic analysis of RC frame structures.The fiber model proposed in this paper is validated by comparing with experiment data of the RC column under cyclical lateral loading.The damage evolution of a three-dimension frame subjected to impact loading is also investigated.