期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
钢轨短波波磨与非稳态滚动接触力学
1
作者 K.Knothe 卢笑山 《国外铁道车辆》 2013年第1期17-25,共9页
阐述了钢轨波磨的波长固定机理,给出了改善钢轨波磨的有关措施。
关键词 钢轨短波波磨 非稳态滚动接触 德国
下载PDF
地铁钢轨短波长波磨形成原因分析 被引量:8
2
作者 周志军 李伟 +1 位作者 温泽峰 肖国放 《振动.测试与诊断》 EI CSCD 北大核心 2020年第6期1040-1047,1226,共9页
国内某地铁线路运营后曲线轨道出现了短波长钢轨波磨现象,通过力锤敲击法对不同扣件轨道动态特性进行了测试。利用ABAQUS建立了轮轨三维实体有限元模型,分析了轮轨耦合模态特性以及白噪声激励时轨道频响特性。结合试验和仿真结果,分析... 国内某地铁线路运营后曲线轨道出现了短波长钢轨波磨现象,通过力锤敲击法对不同扣件轨道动态特性进行了测试。利用ABAQUS建立了轮轨三维实体有限元模型,分析了轮轨耦合模态特性以及白噪声激励时轨道频响特性。结合试验和仿真结果,分析了轮轨结构动态特性与短波长钢轨波磨之间的相关性。研究结果表明:普通扣件和减振扣件轨道钢轨波磨主波长分别为30~63mm和40~50mm;白噪声激励下,两种轨道分别在450~920Hz和570~720Hz范围内的敏感共振频率与列车通过钢轨波磨频率(454~954Hz和572~715Hz)相吻合;线路轨道短波长波磨的产生主要与轨道结构高频固有特性相关,轨道短波长波磨通过频率与轮轨耦合模态频率相近,其模态振型表现为轮对弯曲扭转的同时,伴随钢轨相对轨道板的垂向弯曲振动,轮轨耦合高频模态特征加剧短波长波磨的发展。 展开更多
关键词 地铁 短波钢轨 轨道动态特性 轮轨耦合模态
下载PDF
地铁曲线段不规则磨耗引起的钢轨波磨监测 被引量:3
3
作者 P.T.Torstensson J.C.O.Nielsen 马蒙 《都市快轨交通》 2010年第3期11-16,共6页
在小半径曲线的内轨侧出现钢轨短波波磨加剧的现象,是世界上许多铁路网都面临的一个问题。由于地铁线路小半径曲线大量存在,受其影响尤为突出。本文为一实例研究,属于一个研发预测曲线地段钢轨波磨的数值工具课题的一部分。在斯德哥尔... 在小半径曲线的内轨侧出现钢轨短波波磨加剧的现象,是世界上许多铁路网都面临的一个问题。由于地铁线路小半径曲线大量存在,受其影响尤为突出。本文为一实例研究,属于一个研发预测曲线地段钢轨波磨的数值工具课题的一部分。在斯德哥尔摩地铁中一处半径为120m的曲线段上,通过重复测试轨道的粗糙度及列车通过时引起的噪声,监测波磨的发展状况。在一年的打磨过程中,发生了剧烈的短波波磨,最大峰-峰值约为0.15mm。测试数据谱分析显示,在4~14cm波长范围内,粗糙度幅值较大,峰值约在5和8cm处。波磨为单一的纵向形式(波峰与轨道方向垂直),幅值在100m长的被测轨道段上呈现不规则变化。粗糙度增长速率随时间增加,直至钢轨打磨后的300天,此后仅有少量的附加粗糙度出现。由于平均车速约为30km/h,因此由波磨造成的滚动噪声主要处于200Hz以下的低频段。打磨后的139~300天,4~14cm波长范围内粗糙度级增加10.1dB,与之相应的60~200Hz频段内的滚动噪声级增加4.9dB。在干燥天气条件下,列车通过时引起人体不适的噪声主要是车轮啸鸣噪声而非滚动噪声。 展开更多
关键词 钢轨短波波磨 地铁曲线 粗糙度测试 铁路噪声
下载PDF
地铁钢轨波磨对车辆和轨道动态行为的影响 被引量:42
4
作者 李伟 曾全君 +2 位作者 朱士友 樊嘉峰 金学松 《交通运输工程学报》 EI CSCD 北大核心 2015年第1期34-42,共9页
采用钢轨波磨测量仪测量了钢轨波磨特征,采用加速度和位移传感器测量了钢轨打磨前后车辆和轨道零部件的振动加速度,分析了钢轨波磨对车辆和轨道零部件振动的影响,建立了车辆-轨道耦合动力学模型,研究了钢轨波磨对轮轨相互作用力的影响,... 采用钢轨波磨测量仪测量了钢轨波磨特征,采用加速度和位移传感器测量了钢轨打磨前后车辆和轨道零部件的振动加速度,分析了钢轨波磨对车辆和轨道零部件振动的影响,建立了车辆-轨道耦合动力学模型,研究了钢轨波磨对轮轨相互作用力的影响,确定了钢轨打磨限值。研究结果表明:钢轨波磨主波长为30-40mm,次波长为16mm;钢轨轨头和弹条在650-800Hz的振动和轴箱在670-800Hz的振动与30-40mm波长对应的车辆通过振动行为一致,因此,短波钢轨波磨导致地铁车辆和轨道零部件振动过大,是车辆一系钢弹簧和轨道扣件弹条疲劳断裂的主要原因;钢轨打磨可以有效解决疲劳断裂问题,打磨前钢轨轨头、弹条、轨枕和道床振动加速度均方根分别为243.4、309.3、17.1、2.6m·s^-2,打磨后振动加速度均方根下降为51.5、8.8、1.5、0.5m·s^-2;轮轨垂向力和横向力均对钢轨波磨波长非常敏感,当钢轨波磨波深为0.1mm时,35、80mm波长对应的轮轨垂向力分别为307、109kN,横向力分别为56、25kN;当车辆运营速度为90-120km·h^-1时,根据轮重减载率限值标准,35mm波长钢轨波磨波深为0.05-0.08mm,根据轮轨垂向力限值标准,35mm波长钢轨波磨波深为0.03-0.06mm,建议30-40mm短波钢轨波磨波深达到0.05mm时进行打磨处理。 展开更多
关键词 地铁 短波钢轨 车辆-轨道耦合动力学 钢轨
原文传递
地铁钢轨波磨演化过程中的特性分析 被引量:12
5
作者 李伟 温泽峰 +2 位作者 王衡禹 赵鑫 王鹏 《机械工程学报》 EI CAS CSCD 北大核心 2018年第4期70-78,共9页
调查分析了广州某条地铁线路轨道短波长钢轨波磨现象形成原因。首先,现场测试了线路钢轨波磨状态,对比分析了采用相同车辆结构和运营条件的另一条地铁线路钢轨波磨特征的差异。然后,基于地铁轮对-轨道高频相互作用线性理论和钢轨磨损理... 调查分析了广州某条地铁线路轨道短波长钢轨波磨现象形成原因。首先,现场测试了线路钢轨波磨状态,对比分析了采用相同车辆结构和运营条件的另一条地铁线路钢轨波磨特征的差异。然后,基于地铁轮对-轨道高频相互作用线性理论和钢轨磨损理论,建立了钢轨波磨频域分析模型。最后,基于力锤敲击测试方法获得了轨道结构动态特性,利用钢轨波磨频域模型计算分析了地铁车辆通过半径800 m曲线时的钢轨磨损率特征。结果表明:(1)地铁线路采用的GJ-III型减振扣件和DTVI型普通扣件长轨枕轨道在大半径(大于等于800 m)曲线均出现了30~40 mm波长钢轨波磨现象,其产生不是由轮对固有模态特性所致。(2)当车辆以90 km/h速度运行时,仿真获得的轨道钢轨磨损率在1030~1130 Hz和620~840 Hz范围表现最大,易萌生22~24 mm和28~40 mm波长波磨;仿真结果与现场测量的钢轨波磨特征吻合。(3)轨道垂向位移导纳值在620~840Hz高频段表现低是导致该地铁线路出现30~40 mm短波长波磨的主要原因。 展开更多
关键词 地铁 短波钢轨 钢轨损率 轨道导纳 频域
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部