-
题名基于语义分割的钢轨表面缺陷实时检测系统
被引量:12
- 1
-
-
作者
李忠海
白秋阳
王富明
刘海荣
-
机构
沈阳航空航天大学自动化学院
-
出处
《计算机工程与应用》
CSCD
北大核心
2021年第12期248-256,共9页
-
基金
辽宁省教育科学规划基金(JG16ZXZK010)。
-
文摘
钢轨表面缺陷检测是铁路日常检测的重要部分,根据现代铁路自动化检测技术对实时检测和适应性的要求,构建了一个完整的钢轨表面缺陷识别和分析系统。根据机器视觉的基本原理,设计了一种带有LED辅助光源和遮光箱的图像采集装置,并将采集到的图像进行人工标注,建立了一个较为庞大的具有语义分割标注的钢轨表面缺陷数据集;将高级语义分割技术应用于钢轨图像分析,利用一种级联自编码结构(CASAE)的语义分割网络,将缺陷图像转化为基于语义分割的像素级预测掩码,并通过紧凑型卷积神经网络(CNN)将分割结果进行分类,从而实现钢轨表面缺陷的识别与分类;构建了智能化的人机交互系统,并将系统通过仿真实验的方式进行测试。实验结果表明,系统的检测准确率达到90%以上,每幅图像的平均处理时间为245.61 ms,可以在一定程度上代替人工检测,实现对钢轨缺陷的数字化管理。
-
关键词
实时检测
机器视觉
语义分割
钢轨缺陷检测系统
-
Keywords
real time detection
machine vision
semantic segmentation
rail defect detection system
-
分类号
TP18
[自动化与计算机技术—控制理论与控制工程]
-