Cu47Ti33Zr11Ni6Sn2Si1-based bulk metallic glass matrix composites reinforced with tungsten wires were fabricated by infiltration process at different temperatures (850, 900, 950 and 1000 °C) and time (10, 20 a...Cu47Ti33Zr11Ni6Sn2Si1-based bulk metallic glass matrix composites reinforced with tungsten wires were fabricated by infiltration process at different temperatures (850, 900, 950 and 1000 °C) and time (10, 20 and 30 min) in a quartz or a steel tube. The mechanical tests were carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the maximum strength and total strain of the composite are 1778 MPa and 2.8% fabricated in steel tube at 900 °C for 10 min, and 1582 MPa and 3.6% fabricated in quartz tube at 850 °C for 10 min, respectively.展开更多
This paper introduced the structure, component and sintering procedure of the Diamond/WC-Co composite insert fabricated by high pressure and high temperature (HPHT) method as well as by hot pressing method. In HPHT me...This paper introduced the structure, component and sintering procedure of the Diamond/WC-Co composite insert fabricated by high pressure and high temperature (HPHT) method as well as by hot pressing method. In HPHT method, to avoid breakage and delamination of the diamond layer, two transition layers were added between the most outer diamond layer and the WC-Co body. The transition layers compensate for differences in thermal expansion coefficient and elastic modulus of diamond layer and WC-Co substrate. Thus reduces the residual stress induced by cooling the inserts from sintering temperature to room temperature. In hot pressing method, to decrease sintering temperature so as to protect diamond, an active sintering process which achieved by adding nickel and phosphorus into the starting mixed powder is adopted. To increase the toughness of the inserts to resist breakage, proper amount of rare earth compound, LaNi5 and CeO2, are added into the original mixed powder, too. Laboratory tests indicated that both of the diamond enhanced inserts fabricated by HPHT method and by hot pressing method have relatively high hardness and impact toughness, while their wear resistance is about hundreds of times greater than that of conventional cemented tungsten carbide inserts. The results of field drilling test indicated that the diamond enhanced inserts can meet the demands of rotary percussion drilling.展开更多
文摘Cu47Ti33Zr11Ni6Sn2Si1-based bulk metallic glass matrix composites reinforced with tungsten wires were fabricated by infiltration process at different temperatures (850, 900, 950 and 1000 °C) and time (10, 20 and 30 min) in a quartz or a steel tube. The mechanical tests were carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the maximum strength and total strain of the composite are 1778 MPa and 2.8% fabricated in steel tube at 900 °C for 10 min, and 1582 MPa and 3.6% fabricated in quartz tube at 850 °C for 10 min, respectively.
文摘This paper introduced the structure, component and sintering procedure of the Diamond/WC-Co composite insert fabricated by high pressure and high temperature (HPHT) method as well as by hot pressing method. In HPHT method, to avoid breakage and delamination of the diamond layer, two transition layers were added between the most outer diamond layer and the WC-Co body. The transition layers compensate for differences in thermal expansion coefficient and elastic modulus of diamond layer and WC-Co substrate. Thus reduces the residual stress induced by cooling the inserts from sintering temperature to room temperature. In hot pressing method, to decrease sintering temperature so as to protect diamond, an active sintering process which achieved by adding nickel and phosphorus into the starting mixed powder is adopted. To increase the toughness of the inserts to resist breakage, proper amount of rare earth compound, LaNi5 and CeO2, are added into the original mixed powder, too. Laboratory tests indicated that both of the diamond enhanced inserts fabricated by HPHT method and by hot pressing method have relatively high hardness and impact toughness, while their wear resistance is about hundreds of times greater than that of conventional cemented tungsten carbide inserts. The results of field drilling test indicated that the diamond enhanced inserts can meet the demands of rotary percussion drilling.