Heat moving source models along with transient heat analysis by finite element method were used to determine weld thermal cycles and isothermal sections obtained from the application of a gas tungsten arc welding bead...Heat moving source models along with transient heat analysis by finite element method were used to determine weld thermal cycles and isothermal sections obtained from the application of a gas tungsten arc welding beads on Inconel 718 plates. Analytical (Rosenthal’s thick plate model) and finite element results show an acceptable approximation with the experimental weld thermal cycles. The isothermal sections determined by numerical simulation show a better approximation with the experimental welding profile for double-ellipse model heat distribution than Gauss model. To analyze the microstructural transformation produced by different cooling rates in the fusion and heat affected zones, Vickers microhardness measurements (profile and mapping representation) were conducted. A hardness decrement for the heat affected zone (~200 HV0.2) and fusion zone (~240 HV0.2) in comparison with base material (~350 HV0.2) was observed. This behavior has been attributed to the heterogeneous solubilization process of the γ″ phase (nickel matrix), which, according to the continuous-cooling-transformation curve, produced the Laves phase,δ and MC transition phases, generating a loss in hardness close to the fusion zone.展开更多
Titanium alloys have been successfully applied for aerospace, ship and chemical industries because they possess many good characteristics such as high specific strength, superior corrosion resistance and excellent hig...Titanium alloys have been successfully applied for aerospace, ship and chemical industries because they possess many good characteristics such as high specific strength, superior corrosion resistance and excellent high temperature resistance. Though these alloys show reasonable weldability characteristics, the joint properties are greatly influenced by the welding processes. Weld thermal cycle of the processes will control the weld metal solidification and subsequent phase transformation and resultant microstructure. The welded joints of Ti-6Al-4V alloy were fabricated by gas tungsten arc welding (GTAW), laser beam welding (LBW) and electron beam welding (EBW) processes. The joints fabricated by EBW process exhibit higher strength compared with the GTAW and LBW joints; but the joints by GTAW process exhibit higher impact toughness compared with the LBW and EBW joints. The resultant tensile and impact properties of the welded joints were correlated with the weld metal microstructures.展开更多
AA2219 aluminium alloy square butt joints without filler metal addition were fabricated using gas tungsten arc welding (GTAW), electron beam welding (EBW) and friction stir welding (FSW) processes. The effects o...AA2219 aluminium alloy square butt joints without filler metal addition were fabricated using gas tungsten arc welding (GTAW), electron beam welding (EBW) and friction stir welding (FSW) processes. The effects of three welding processes on the tensile, fatigue and corrosion behaviour were studied. Microstructure analysis was carried out using optical and electron microscopes. The results show that the FSW joints exhibit superior tensile and fatigue properties compared to EBW and GTAW joints. It is also found that the friction stir welds show lower corrosion resistance than EB and GTA welds. This is mainly due to the presence of finer grains and uniform distribution of strengthening precipitates in the weld metal of FSW joints.展开更多
The effect of welding speed on tensile and microstructural characteristics of pulsed current gas tungsten arc welded(PCGTAW) AZ31 B magnesium alloy joints was studied. Five joints were fabricated using different lev...The effect of welding speed on tensile and microstructural characteristics of pulsed current gas tungsten arc welded(PCGTAW) AZ31 B magnesium alloy joints was studied. Five joints were fabricated using different levels of welding speeds(105-145 mm/min). It was found that the joints fabricated using a welding speed of 135 mm/min yielded superior tensile properties compared to other joints. The formation of fine grains and uniformly distributed precipitates in the fusion zone are the main reasons for the superior tensile properties of these joints.展开更多
The present study is aimed to compare the microstructure characteristics and mechanical properties of AA6082 in T6 condition of tubular joints fabricated by tungsten inert gas welding (TIG) and metal inert gas weldi...The present study is aimed to compare the microstructure characteristics and mechanical properties of AA6082 in T6 condition of tubular joints fabricated by tungsten inert gas welding (TIG) and metal inert gas welding (MIG) processes. The effect of welding processes was analysed based on optical microscopy image, tensile testing, and Vickers micro-hardness measurements. The results showed that the tensile strengths of the TIG-welded joints were better than those of the MIG-welded joints, due to the contribution of fine equiaxed grains formation with narrower spacing arms. In terms of joint efficiency, the TIG process produced more reliable strength, which was about 25% higher compared to the MIG-joint. A significant decay of hardness was recorded in the adjacent of the weld bead zone, shown in both joints, related to phase transformation, induced by high temperatures experienced by material. A very low hardness, which was about 1.08 GPa, was recorded in the MIG-weldcd specimens. The extent of the heat-affected-zone (HAZ) in the MIG-welded joints was slightly wider than those of the TIG-welded specimens, which corresponded with a higher heat input per unit length.展开更多
Microstructural evolution and its effect on mechanical properties in different regions of 2219-C10S aluminum alloy tungsten inert gas(TIG)welded joint were analyzed in detail.In weld zone(WZ),α+θeutectic structure f...Microstructural evolution and its effect on mechanical properties in different regions of 2219-C10S aluminum alloy tungsten inert gas(TIG)welded joint were analyzed in detail.In weld zone(WZ),α+θeutectic structure formed at grain boundaries with no precipitates inside the grains.In partially melted zone(PMZ),symbiotic eutectic or divorced eutectic formed at grain boundaries and needle-likeθ′phases appeared in the secondary heated zone.In over aged zone(OAZ),the coarsening and dissolution ofθ′phases occurred and mostθ′phases transformed intoθphases.In general heat affected zone(HAZ),θ′phases coarsened.Factors such as the strengthening phases,the grain size,the Cu content in matrix and the dislocation density can affect the mechanical properties in different regions of the joint.Moreover,a model describing the relationship between mechanical properties of the material and the volume fraction of precipitates,the average diameter of precipitates and the concentration of soluble elements was proposed.展开更多
基金CONACyT-México for the scholarship providedCONACyT (Project 736)SIP-IPN are also acknowledged for funds given to conduct this research
文摘Heat moving source models along with transient heat analysis by finite element method were used to determine weld thermal cycles and isothermal sections obtained from the application of a gas tungsten arc welding beads on Inconel 718 plates. Analytical (Rosenthal’s thick plate model) and finite element results show an acceptable approximation with the experimental weld thermal cycles. The isothermal sections determined by numerical simulation show a better approximation with the experimental welding profile for double-ellipse model heat distribution than Gauss model. To analyze the microstructural transformation produced by different cooling rates in the fusion and heat affected zones, Vickers microhardness measurements (profile and mapping representation) were conducted. A hardness decrement for the heat affected zone (~200 HV0.2) and fusion zone (~240 HV0.2) in comparison with base material (~350 HV0.2) was observed. This behavior has been attributed to the heterogeneous solubilization process of the γ″ phase (nickel matrix), which, according to the continuous-cooling-transformation curve, produced the Laves phase,δ and MC transition phases, generating a loss in hardness close to the fusion zone.
基金the Combat Vehicle Research and Development Establishment(CVRDE),Avadi,Chennai,Government of India for providing financial support to carry out this investigation through a Contract Acquisition for Research Services project,No.CVRDE/MMG/09-10/0043/CARS
文摘Titanium alloys have been successfully applied for aerospace, ship and chemical industries because they possess many good characteristics such as high specific strength, superior corrosion resistance and excellent high temperature resistance. Though these alloys show reasonable weldability characteristics, the joint properties are greatly influenced by the welding processes. Weld thermal cycle of the processes will control the weld metal solidification and subsequent phase transformation and resultant microstructure. The welded joints of Ti-6Al-4V alloy were fabricated by gas tungsten arc welding (GTAW), laser beam welding (LBW) and electron beam welding (EBW) processes. The joints fabricated by EBW process exhibit higher strength compared with the GTAW and LBW joints; but the joints by GTAW process exhibit higher impact toughness compared with the LBW and EBW joints. The resultant tensile and impact properties of the welded joints were correlated with the weld metal microstructures.
基金Project DRAO/08/1061356/M1 supported by Aeronautical Research & Development Board (ARDB),New Delhi,India
文摘AA2219 aluminium alloy square butt joints without filler metal addition were fabricated using gas tungsten arc welding (GTAW), electron beam welding (EBW) and friction stir welding (FSW) processes. The effects of three welding processes on the tensile, fatigue and corrosion behaviour were studied. Microstructure analysis was carried out using optical and electron microscopes. The results show that the FSW joints exhibit superior tensile and fatigue properties compared to EBW and GTAW joints. It is also found that the friction stir welds show lower corrosion resistance than EB and GTA welds. This is mainly due to the presence of finer grains and uniform distribution of strengthening precipitates in the weld metal of FSW joints.
基金University Grant Commission (UGC), New Delhi for financial support rendered through Major Research Project No: 39-864/2010
文摘The effect of welding speed on tensile and microstructural characteristics of pulsed current gas tungsten arc welded(PCGTAW) AZ31 B magnesium alloy joints was studied. Five joints were fabricated using different levels of welding speeds(105-145 mm/min). It was found that the joints fabricated using a welding speed of 135 mm/min yielded superior tensile properties compared to other joints. The formation of fine grains and uniformly distributed precipitates in the fusion zone are the main reasons for the superior tensile properties of these joints.
基金University Science Malaysia (USM) and Malaysia Ministry of Education (MoE) for their technical and financial support
文摘The present study is aimed to compare the microstructure characteristics and mechanical properties of AA6082 in T6 condition of tubular joints fabricated by tungsten inert gas welding (TIG) and metal inert gas welding (MIG) processes. The effect of welding processes was analysed based on optical microscopy image, tensile testing, and Vickers micro-hardness measurements. The results showed that the tensile strengths of the TIG-welded joints were better than those of the MIG-welded joints, due to the contribution of fine equiaxed grains formation with narrower spacing arms. In terms of joint efficiency, the TIG process produced more reliable strength, which was about 25% higher compared to the MIG-joint. A significant decay of hardness was recorded in the adjacent of the weld bead zone, shown in both joints, related to phase transformation, induced by high temperatures experienced by material. A very low hardness, which was about 1.08 GPa, was recorded in the MIG-weldcd specimens. The extent of the heat-affected-zone (HAZ) in the MIG-welded joints was slightly wider than those of the TIG-welded specimens, which corresponded with a higher heat input per unit length.
基金Project(U1637601)supported by the Joint Funds of the National Natural Science Foundation of China。
文摘Microstructural evolution and its effect on mechanical properties in different regions of 2219-C10S aluminum alloy tungsten inert gas(TIG)welded joint were analyzed in detail.In weld zone(WZ),α+θeutectic structure formed at grain boundaries with no precipitates inside the grains.In partially melted zone(PMZ),symbiotic eutectic or divorced eutectic formed at grain boundaries and needle-likeθ′phases appeared in the secondary heated zone.In over aged zone(OAZ),the coarsening and dissolution ofθ′phases occurred and mostθ′phases transformed intoθphases.In general heat affected zone(HAZ),θ′phases coarsened.Factors such as the strengthening phases,the grain size,the Cu content in matrix and the dislocation density can affect the mechanical properties in different regions of the joint.Moreover,a model describing the relationship between mechanical properties of the material and the volume fraction of precipitates,the average diameter of precipitates and the concentration of soluble elements was proposed.