间接电弧焊接是一种新型的焊接方法,具有高效、节能、焊接应力和变形小的优点。为了研究间接电弧的电弧参数的分布特点以及这种焊接方法热输入低的根本原因,利用有限元分析软件,建立双钨极间接电弧的三维有限元数学模型,计算得到双钨极...间接电弧焊接是一种新型的焊接方法,具有高效、节能、焊接应力和变形小的优点。为了研究间接电弧的电弧参数的分布特点以及这种焊接方法热输入低的根本原因,利用有限元分析软件,建立双钨极间接电弧的三维有限元数学模型,计算得到双钨极间接电弧的温度、等离子体流速、电弧压力以及热流密度分布等特征参数;通过高速摄像拍摄到的电弧形态照片与计算得到的温度云图对比验证模拟结果的可信性。结果表明双钨极间接电弧面对称且向阳极方向偏转,呈上宽下窄的倒钟罩形态,阳极一侧的各项特征参数大于阴极一侧;与惰性气体钨极保护(Tungsten inert gas arc,TIG)焊接和等离子弧焊接相比,双钨极间接电弧被焊接工件不接电极,主要靠热流密度、等离子体流速、电弧压力等参数都比较低的弧柱区端部加热,造成工件焊接热输入低、熔深浅。展开更多
The transfer behavior of nitrogen into the welding metal during gas tungsten arc welding process of 32Mn-7Cr-1Mo-0.3N steel was investigated. The effects of gas tungsten arc welding process variables, such as the volu...The transfer behavior of nitrogen into the welding metal during gas tungsten arc welding process of 32Mn-7Cr-1Mo-0.3N steel was investigated. The effects of gas tungsten arc welding process variables, such as the volume fraction of nitrogen in shielding gas, arc holding time and arc current on the nitrogen content in the welding metal were also evaluated. The results show that the volume fraction of nitrogen in gas mixture plays a major role in controlling the nitrogen content in the welding metal. It seems that there exhibits a maximum nitrogen content (depending) on the arc current and arc holding time. The optimum volume fraction of nitrogen in shielding gas is 4% or so. The role of gas tungsten arc welding processing parameters in controlling the transfer of nitrogen is further (confirmed) by the experimental results of gas tungsten arc welding process with feeding metal.展开更多
文摘间接电弧焊接是一种新型的焊接方法,具有高效、节能、焊接应力和变形小的优点。为了研究间接电弧的电弧参数的分布特点以及这种焊接方法热输入低的根本原因,利用有限元分析软件,建立双钨极间接电弧的三维有限元数学模型,计算得到双钨极间接电弧的温度、等离子体流速、电弧压力以及热流密度分布等特征参数;通过高速摄像拍摄到的电弧形态照片与计算得到的温度云图对比验证模拟结果的可信性。结果表明双钨极间接电弧面对称且向阳极方向偏转,呈上宽下窄的倒钟罩形态,阳极一侧的各项特征参数大于阴极一侧;与惰性气体钨极保护(Tungsten inert gas arc,TIG)焊接和等离子弧焊接相比,双钨极间接电弧被焊接工件不接电极,主要靠热流密度、等离子体流速、电弧压力等参数都比较低的弧柱区端部加热,造成工件焊接热输入低、熔深浅。
基金Project(59771001) supported by the National Natural Science Foundation of China
文摘The transfer behavior of nitrogen into the welding metal during gas tungsten arc welding process of 32Mn-7Cr-1Mo-0.3N steel was investigated. The effects of gas tungsten arc welding process variables, such as the volume fraction of nitrogen in shielding gas, arc holding time and arc current on the nitrogen content in the welding metal were also evaluated. The results show that the volume fraction of nitrogen in gas mixture plays a major role in controlling the nitrogen content in the welding metal. It seems that there exhibits a maximum nitrogen content (depending) on the arc current and arc holding time. The optimum volume fraction of nitrogen in shielding gas is 4% or so. The role of gas tungsten arc welding processing parameters in controlling the transfer of nitrogen is further (confirmed) by the experimental results of gas tungsten arc welding process with feeding metal.