This paper reported the behavior of cyclic voltammetry (CV), differential pulsevoltammetry (DPV ) and spectroelectrochemistry (SEC) of Co2Co2-superoxide dismutase.The results obtained by CV and DPV were in agreement w...This paper reported the behavior of cyclic voltammetry (CV), differential pulsevoltammetry (DPV ) and spectroelectrochemistry (SEC) of Co2Co2-superoxide dismutase.The results obtained by CV and DPV were in agreement well with that obtained by SEC.The diffusion coefficient, the apparent number of electrons and oxidation-reductionpotentials were obtained.展开更多
受教育部及德国德意志研究联合会(DFG)联合资助,我于2003年9月4日~11月30日在德国Darmstadt University of Technology H.F.-Klein教授的科研组进行了短期的合作交流项目研究。(1)与三甲基膦支持的酰基合钴氢化物端基取代乙炔的插...受教育部及德国德意志研究联合会(DFG)联合资助,我于2003年9月4日~11月30日在德国Darmstadt University of Technology H.F.-Klein教授的科研组进行了短期的合作交流项目研究。(1)与三甲基膦支持的酰基合钴氢化物端基取代乙炔的插入反应研究。展开更多
All-inorganic and earth-abundant bi-/trimetallic hydr(oxy)oxides are widely used as oxygen evolution electrocatalysts owing to their remarkable performance.However,their atomically precise structures remain undefined,...All-inorganic and earth-abundant bi-/trimetallic hydr(oxy)oxides are widely used as oxygen evolution electrocatalysts owing to their remarkable performance.However,their atomically precise structures remain undefined,complicating their optimization and limiting the understanding of their enhanced performance.Here,the underlying structure-property correlation is explored by using a well-defined cobalt-phosphate polyoxometalate cluster [{(Co4)(OH)3(PO4)}4(SiW9 O34)4]^32-(1),which may serve as a molecular model of multimetal hydr(oxy)oxides.The catalytic activity is enhanced upon replacing Co by Fe in 1,resulting in a reduced overpotential(385 mV) for oxygen evolution(by 66 mV) compared to that of the parent 1 at 10 mA cm^-2 in an acidic medium;this overpotential is comparable to that for the IrO2 catalyst These abundant-metal-based polyoxometalates exhibit high stability,with no evidence of degradation even after 24 h of operation.展开更多
Cation substitution in spinel cobaltites(e.g.,ACo2O4,in which A=Mn,Fe,Co,Ni,Cu,or Zn)is a promising strategy to precisely modulate their electronic structure/properties and thus improve the corresponding electrochemic...Cation substitution in spinel cobaltites(e.g.,ACo2O4,in which A=Mn,Fe,Co,Ni,Cu,or Zn)is a promising strategy to precisely modulate their electronic structure/properties and thus improve the corresponding electrochemical performance for water splitting.However,the fundamental principles and mechanisms are not fully understood.This research aims to systematically investigate the effects of cation substitution in spinel cobaltites derived from mixed-metal-organic frameworks on the oxygen evolution reaction(OER).Among the obtained ACo2O4 catalysts,FeCo2O4 showed excellent OER performance with a current density of 10 mA·cm^-2 at an overpotential of 164 mV in alkaline media.Both theoretical calculations and experimental results demonstrate that the Fe substitution in the crystal lattice of ACo2O4 can significantly accelerate charge transfer,thereby achieving enhanced electrochemical properties.The crystal field of spinel ACo2O4,which determines the valence states of cations A,is identified as the key factor to dictate the OER performance of these spinel cobaltites.展开更多
文摘This paper reported the behavior of cyclic voltammetry (CV), differential pulsevoltammetry (DPV ) and spectroelectrochemistry (SEC) of Co2Co2-superoxide dismutase.The results obtained by CV and DPV were in agreement well with that obtained by SEC.The diffusion coefficient, the apparent number of electrons and oxidation-reductionpotentials were obtained.
文摘All-inorganic and earth-abundant bi-/trimetallic hydr(oxy)oxides are widely used as oxygen evolution electrocatalysts owing to their remarkable performance.However,their atomically precise structures remain undefined,complicating their optimization and limiting the understanding of their enhanced performance.Here,the underlying structure-property correlation is explored by using a well-defined cobalt-phosphate polyoxometalate cluster [{(Co4)(OH)3(PO4)}4(SiW9 O34)4]^32-(1),which may serve as a molecular model of multimetal hydr(oxy)oxides.The catalytic activity is enhanced upon replacing Co by Fe in 1,resulting in a reduced overpotential(385 mV) for oxygen evolution(by 66 mV) compared to that of the parent 1 at 10 mA cm^-2 in an acidic medium;this overpotential is comparable to that for the IrO2 catalyst These abundant-metal-based polyoxometalates exhibit high stability,with no evidence of degradation even after 24 h of operation.
文摘Cation substitution in spinel cobaltites(e.g.,ACo2O4,in which A=Mn,Fe,Co,Ni,Cu,or Zn)is a promising strategy to precisely modulate their electronic structure/properties and thus improve the corresponding electrochemical performance for water splitting.However,the fundamental principles and mechanisms are not fully understood.This research aims to systematically investigate the effects of cation substitution in spinel cobaltites derived from mixed-metal-organic frameworks on the oxygen evolution reaction(OER).Among the obtained ACo2O4 catalysts,FeCo2O4 showed excellent OER performance with a current density of 10 mA·cm^-2 at an overpotential of 164 mV in alkaline media.Both theoretical calculations and experimental results demonstrate that the Fe substitution in the crystal lattice of ACo2O4 can significantly accelerate charge transfer,thereby achieving enhanced electrochemical properties.The crystal field of spinel ACo2O4,which determines the valence states of cations A,is identified as the key factor to dictate the OER performance of these spinel cobaltites.