Stable and high‐efficiency bifunctional catalysts for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are desired for the practical application of Li‐O_(2)batteries with excellent rate performanc...Stable and high‐efficiency bifunctional catalysts for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are desired for the practical application of Li‐O_(2)batteries with excellent rate performance and cycle stability.Herein,a novel hybrid bifunctional catalyst with carbon nanofibers inlaid with hollow Co_(3)O_(4)nanoparticles and separate active sites for ORR and OER were prepared and applied in Li‐O_(2)batteries.Benefiting from the synergistic effect of unique porous structural features and high electrocatalytic activity of hollow Co3O4 intimately bound to N‐doped carbon nanofibers,the assembled Li‐O_(2)batteries with novel catalyst exhibited high specific capacity,excellent rate capability,and cycle stability up to 150 cycles under a capacity limitation of 500 mAh g^(–1)at a current density of 100 mA g^(–1).The facile synthesis and preliminary results in this work show the as‐prepared catalyst as a promising bifunctional electrocatalyst for applications in metal‐air batteries,fuel cells,and electrocatalysis.展开更多
Oxygen reduction reaction (ORR) is key to fuel cells and metal-air batteries which are considered as the al- ternative clean energy. Various carbon materials have been widely researched as ORR electrocatalysts. It h...Oxygen reduction reaction (ORR) is key to fuel cells and metal-air batteries which are considered as the al- ternative clean energy. Various carbon materials have been widely researched as ORR electrocatalysts. It has been ac- cepted that heteroatom doping and exposure of the edge sites can effectively improve the activity of carbon materials. In this work, we used a simple method to prepare a novel N, P-dual doped carbon-based catalyst with many holes on the surface. In addition, trace level Co doping in the carbon material forming Co-N-C active species can further enhance the ORR performance. On one hand, the doping can adjust the elec- tronic structure of carbon atoms, which would induce more active sites for ORR. And on the other hand, the holes formed on the surface of carbon nanosheets would expose more edge sites and can improve the intrinsic activity of carbon. Due to the heteroatom doping and the exposed edge sites, the pre- pared carbon materials showed highly excellent ORR perfor- mance, dose to that of commercial Pt/C.展开更多
In this paper,we synthesized cathode catalysts(PANI-PPYR,Fe/PANI-PPYR,Co/PANI-PPYR and Fe-Co/PANI-PPYR)with high performance oxygen reduction by using a simple heat treatment process.These catalysts were fabricated by...In this paper,we synthesized cathode catalysts(PANI-PPYR,Fe/PANI-PPYR,Co/PANI-PPYR and Fe-Co/PANI-PPYR)with high performance oxygen reduction by using a simple heat treatment process.These catalysts were fabricated by directly calcining the Fe and/or Co doped polyaniline(PANI)-polypyrrole(PPYR)composites.Their electrocatalytic activity for ORR both in acidic and in alkaline media was investigated by voltammetric techniques.Among the prepared catalysts,Co/PANI-PPYR presents the most positive ORR onset potential of 0.62 V(vs.SCE)in 0.5 mol/L H2SO4 solution or?0.09 V(vs.SCE)in 1 mol/L NaOH solution.In addition,the Co/PANI-PPYR catalyst shows the largest limiting-diffusion current density for ORR,which is 4.3 mA/cm2@0.2 V(vs.SCE)in acidic and 2.3 mA/cm2@?0.3 V(vs.SCE)in alkaline media.In acidic media,a four-electron reaction of ORR on the Co/PANI-PPYR and Fe/PANI-PPYR catalysts is more dominant than a two-electron reaction.In alkaline media,however,a four-electron and a two-electron mechanisms are co-present for the ORR on all the prepared catalysts.Co/PANI-PPYR catalyst also presents good electrocatalytic activity stability for ORR both in acidic and in alkaline media.展开更多
文摘Stable and high‐efficiency bifunctional catalysts for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are desired for the practical application of Li‐O_(2)batteries with excellent rate performance and cycle stability.Herein,a novel hybrid bifunctional catalyst with carbon nanofibers inlaid with hollow Co_(3)O_(4)nanoparticles and separate active sites for ORR and OER were prepared and applied in Li‐O_(2)batteries.Benefiting from the synergistic effect of unique porous structural features and high electrocatalytic activity of hollow Co3O4 intimately bound to N‐doped carbon nanofibers,the assembled Li‐O_(2)batteries with novel catalyst exhibited high specific capacity,excellent rate capability,and cycle stability up to 150 cycles under a capacity limitation of 500 mAh g^(–1)at a current density of 100 mA g^(–1).The facile synthesis and preliminary results in this work show the as‐prepared catalyst as a promising bifunctional electrocatalyst for applications in metal‐air batteries,fuel cells,and electrocatalysis.
基金supported by the National Natural Science Foundation of China (21701043, 21573066, and 51402100)the Provincial Natural Science Foundation of Hunan (2016JJ1006 and 2016TP1009)the Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province and Shenzhen Science and Technology Program (JCYJ20170306141659388)
文摘Oxygen reduction reaction (ORR) is key to fuel cells and metal-air batteries which are considered as the al- ternative clean energy. Various carbon materials have been widely researched as ORR electrocatalysts. It has been ac- cepted that heteroatom doping and exposure of the edge sites can effectively improve the activity of carbon materials. In this work, we used a simple method to prepare a novel N, P-dual doped carbon-based catalyst with many holes on the surface. In addition, trace level Co doping in the carbon material forming Co-N-C active species can further enhance the ORR performance. On one hand, the doping can adjust the elec- tronic structure of carbon atoms, which would induce more active sites for ORR. And on the other hand, the holes formed on the surface of carbon nanosheets would expose more edge sites and can improve the intrinsic activity of carbon. Due to the heteroatom doping and the exposed edge sites, the pre- pared carbon materials showed highly excellent ORR perfor- mance, dose to that of commercial Pt/C.
基金supported by the National Natural Science Foundation of China(21376070,20876038)the Scientific Research Fund of Hunan Provincial Education Department(11K023)Hunan Provincial Natural Science Foundation of China(14JJ2096)
文摘In this paper,we synthesized cathode catalysts(PANI-PPYR,Fe/PANI-PPYR,Co/PANI-PPYR and Fe-Co/PANI-PPYR)with high performance oxygen reduction by using a simple heat treatment process.These catalysts were fabricated by directly calcining the Fe and/or Co doped polyaniline(PANI)-polypyrrole(PPYR)composites.Their electrocatalytic activity for ORR both in acidic and in alkaline media was investigated by voltammetric techniques.Among the prepared catalysts,Co/PANI-PPYR presents the most positive ORR onset potential of 0.62 V(vs.SCE)in 0.5 mol/L H2SO4 solution or?0.09 V(vs.SCE)in 1 mol/L NaOH solution.In addition,the Co/PANI-PPYR catalyst shows the largest limiting-diffusion current density for ORR,which is 4.3 mA/cm2@0.2 V(vs.SCE)in acidic and 2.3 mA/cm2@?0.3 V(vs.SCE)in alkaline media.In acidic media,a four-electron reaction of ORR on the Co/PANI-PPYR and Fe/PANI-PPYR catalysts is more dominant than a two-electron reaction.In alkaline media,however,a four-electron and a two-electron mechanisms are co-present for the ORR on all the prepared catalysts.Co/PANI-PPYR catalyst also presents good electrocatalytic activity stability for ORR both in acidic and in alkaline media.