The process parameters were optimized for the electrodeposition of cobalt from cobalt chloride solution in the membrane electrolytic reactor. Effects of parameters such as catholyte composition, current density and t...The process parameters were optimized for the electrodeposition of cobalt from cobalt chloride solution in the membrane electrolytic reactor. Effects of parameters such as catholyte composition, current density and temperature on the current efficiency, specific power consumption and quality of deposition were studied. The catholyte was a mixed solution of cobalt chloride, the initial middle electrolyte consisted of diluted hydrochloric acid, and the anolyte was sulfuric acid. An anion exchange membrane separated the catholyte from the middle electrolyte, and a cation exchange membrane separated the anolyte from the middle electrolyte. The results showed that a maximum current efficiency of 97.5% was attained under the optimum experimental condition of an catholyte composition of 80 g/L Co^2+, 20 g/L H3BO3, 3 g/L NaF and pH of 4, at a cathode current density of 250 A/m2 and a temperature of 50 ℃ HCl could be produced in the middle compartment electrochemically up to 0.45 mol/L.展开更多
A novel type of composite electrode based on nmltiwalled carbon nanotubes coated with sheet-like cobalt hydroxide particles was used in supercapacitors. Cobalt hydroxide cathodlcally deposited fiom Co(NO3)O2 solutio...A novel type of composite electrode based on nmltiwalled carbon nanotubes coated with sheet-like cobalt hydroxide particles was used in supercapacitors. Cobalt hydroxide cathodlcally deposited fiom Co(NO3)O2 solution with carbon nanotubes as matrix exhibited large pseudo-capacitance of 322 F/g in 1 mol/L KOH. To characterize the cobalt hydroxide nanocomposite electrode, a charge-discharge cycling test, cyclic voltammetry, and an impedance test were done. This cobalt hydroxide composite exhibiting excellent pseudo-capacitive behavior (i.c. high reversibility, high specific capacitance, low impedance), was demonstrated to be a candidate for the application of electrochemical supercapacitors. A combined capacitor consisting of cobalt hydroxide composite as a cathode and activated carbon fiber as an anode was reported. The electrochemical pcrformance of the combined capacitor was characterized by cyclic voltammetry and a dc charge/discharge test. The combined capacitor showed ideal capacitor behavior with an extended operating voltage of 1.4 V. According to the extended operating voltage, the energy density of the combined capacitor at a current density of 100 mA/cm^2 was found to be 11 Wh/kg. The combined capacitor exhibited high-energy density and stable power characteristics,展开更多
Ni–Co coatings with various cobalt contents were electrodeposited from modified Watts bath. The effect of cobalt content on electrodeposition mechanism of the coatings was studied by electro-chemical impedance spectr...Ni–Co coatings with various cobalt contents were electrodeposited from modified Watts bath. The effect of cobalt content on electrodeposition mechanism of the coatings was studied by electro-chemical impedance spectroscopy method (EIS). Surface morphology and crystallographic structure of the coatings were investigated by means of SEM and XRD. Mechanical properties of the coatings were determined using Vickers microhardness and tensile tests. It was found that with increasing the Co2+ions in electroplating bath, the charge transfer resistance (Rct)of Ni-Co film increased whereas the Warburg impedence decreased. This may be due to enhancement in coverage of cathode surface by Co(OH)2 and higher diffusion rate of metal ions towards cathode surface, respectively. Also, with increasing the cobalt content in the bath, cobalt content in the alloy coating increased anomalously and (111) texture consolidated gradually. With increasing the cobalt content up to 45% in alloy coating, the grain size decreased and consequently, hardness and strength of the alloy increased. Further enhancement of cobalt content up to 55% led to a little decrease in hardness and strength. The maximum ductility was observed for Ni-25%Co coating due to relatively small grain size and compact structure.展开更多
Nanocrystalline cobalt coatings were produced from cobalt sulfate based electrolytes by using pulse current electrodeposition technique.The effects of bath composition and electrodeposition condition on current effici...Nanocrystalline cobalt coatings were produced from cobalt sulfate based electrolytes by using pulse current electrodeposition technique.The effects of bath composition and electrodeposition condition on current efficiency,morphology,structure and hardness of the coatings were investigated and the optimum deposition condition was determined.It was found that increment of cobalt sulfate concentration and sodium dodecyl sulfate(SDS)concentration in the bath had a negligible effect on microhardness of the coatings,while they were effective on electrodeposition current efficiency.Adding saccharin to electrodeposition bath decreased crystallite size of hexagonal close-packed(hcp)cobalt films and increased their microhardness without significant effect on current efficiency.Smoother and less defective coatings were also obtained from baths containing SDS and saccharin.The results revealed that both the current efficiency and microhardness were changed by variation of peak current density and duty cycle.Besides change of smooth morphology of the coatings to needle-shaped one,crystallite sizes and preferred orientation also varied with increasing the current density and duty cycle.展开更多
Ni?Co3O4 composite coatings were electrodeposited on mild steel surface from a Watts-type bath in the presence of sodium lauryl sulfate(SLS).The dispersed Co3O4 particles in the presence of SLS have a greater tendency...Ni?Co3O4 composite coatings were electrodeposited on mild steel surface from a Watts-type bath in the presence of sodium lauryl sulfate(SLS).The dispersed Co3O4 particles in the presence of SLS have a greater tendency to move towards cathode and get incorporated in the coating.SLS modifies chemical composition,surface morphology and microstructure of the Ni?Co3O4 composite coating.The developed composite coating exhibits higher corrosion resistance and microhardness than the pure nickel coating.The loadings of bath solution with different concentrations of Co3O4 particles in the presence of SLS provide hydrophobic nature to the coating surface,which is much effective in enhancing the corrosion resistance of Ni?Co3O4 composite coating.The agglomeration of Co3O4 particles(>3 g/L)under high bath load condition develops defects and dislocation on the coating surface,which results in lower corrosion resistance of the deposit.The mechanical properties of the hydrophobic coatings were assessed by the linear abrasion test.展开更多
The electrodeposition of nickel on steel and copper from alkaline NH4OH/NH4Cl buffer solutions was investigated by cyclic voltammetry (CV), chronopotentiometry (CP), chronoamperometry (CA) as well as an opto-digital m...The electrodeposition of nickel on steel and copper from alkaline NH4OH/NH4Cl buffer solutions was investigated by cyclic voltammetry (CV), chronopotentiometry (CP), chronoamperometry (CA) as well as an opto-digital microscope, glow-discharge optical emission spectroscopy (GD-OES), XRF, and SEM-EDS techniques. The aim was to obtain Ni coatings from weak alkaline solutions and to optimize the process. The electrolyte composition, pH, temperature as well as current and potential parameters of the process were optimized using the quality of Ni deposit as a criterion. The role of hydrogen evolution in the process was discussed. An influence of Co as an additive was also investigated. It was found that a small amount of Co catalyzes Ni deposition process and improves the quality and color of the deposit. Therefore, in the possible application, the Ni/Co codeposition should be seriously considered. It was also shown that for constant current deposition mode, the width of self-established potential range, revealed at the very beginning of the process by the chronopotentiometric E=f(t) curves, is related to the quality of the coating.展开更多
The effects of pulse parameters on the cobalt content, surface morphologies and grain size of Zn-Co alloy deposits were studied using a pulse plating technique with a square-wave current containing reverse pulse. Aver...The effects of pulse parameters on the cobalt content, surface morphologies and grain size of Zn-Co alloy deposits were studied using a pulse plating technique with a square-wave current containing reverse pulse. Average current density and reverse anodic current density amongst the variables investigated have very strong effects on the cobalt content in the Zn-Co alloy deposits. Grain size, surface appearance and internal stress in the deposit were improved significantly by introducing the reverse current. Varieties of Zn-Co alloy compositionally modulated multilayer (CMM) coatings with large differences in cobalt contents for different sublayers were electrodeposited by designing corresponding waveforms using a computer-aided pulse plater and characterized in terms of surface morphologies. Cross-sectional morphologies of the Zn-Co alloy CMM coatings, examined using field emission gun scanning electron microscopy (FEGSEM), confirmed the layered structure.展开更多
This paper describes the study of cobalt growth mechanism obtained by electrodeposition method with variation of pH solution. The electrochemical impedance spectroscopy (EIS) and scanning electronic microscopy (SEM...This paper describes the study of cobalt growth mechanism obtained by electrodeposition method with variation of pH solution. The electrochemical impedance spectroscopy (EIS) and scanning electronic microscopy (SEM) results were possible conclude that the cobalt electrodeposited at pH = 5.40 presented approximately an area three times larger than the cobalt electrodeposited at pH = 2.70. In addition, the cobalt electrodeposited at pH = 2.70 had a value of charge transfer resistance equal to 151.6 f2"cm2 and the cobalt electrodeposited at pH = 5.40 this value corresponds to 67.4 f2'cm. This occurs because the increased in micro-porosity increase the diffusion of electrolyte on cobalt electrodeposits easily the corrosion process.展开更多
基金National Natural Science Foundation of China(52261011)Industrial Support Program for Higher Education Institutions in Gansu Province(2022CYZC-19)Gansu Province Key R&D Program Projects(21YF5GD186)。
基金Project(2015016)supported by the Young Scholars Science Foundation of Lanzhou Jiaotong University,ChinaProject(2015BAE04B01)supported by the National Science-technology Support Program of ChinaProject(21466019)supported by the National Natural Science Foundation of China
文摘The process parameters were optimized for the electrodeposition of cobalt from cobalt chloride solution in the membrane electrolytic reactor. Effects of parameters such as catholyte composition, current density and temperature on the current efficiency, specific power consumption and quality of deposition were studied. The catholyte was a mixed solution of cobalt chloride, the initial middle electrolyte consisted of diluted hydrochloric acid, and the anolyte was sulfuric acid. An anion exchange membrane separated the catholyte from the middle electrolyte, and a cation exchange membrane separated the anolyte from the middle electrolyte. The results showed that a maximum current efficiency of 97.5% was attained under the optimum experimental condition of an catholyte composition of 80 g/L Co^2+, 20 g/L H3BO3, 3 g/L NaF and pH of 4, at a cathode current density of 250 A/m2 and a temperature of 50 ℃ HCl could be produced in the middle compartment electrochemically up to 0.45 mol/L.
文摘A novel type of composite electrode based on nmltiwalled carbon nanotubes coated with sheet-like cobalt hydroxide particles was used in supercapacitors. Cobalt hydroxide cathodlcally deposited fiom Co(NO3)O2 solution with carbon nanotubes as matrix exhibited large pseudo-capacitance of 322 F/g in 1 mol/L KOH. To characterize the cobalt hydroxide nanocomposite electrode, a charge-discharge cycling test, cyclic voltammetry, and an impedance test were done. This cobalt hydroxide composite exhibiting excellent pseudo-capacitive behavior (i.c. high reversibility, high specific capacitance, low impedance), was demonstrated to be a candidate for the application of electrochemical supercapacitors. A combined capacitor consisting of cobalt hydroxide composite as a cathode and activated carbon fiber as an anode was reported. The electrochemical pcrformance of the combined capacitor was characterized by cyclic voltammetry and a dc charge/discharge test. The combined capacitor showed ideal capacitor behavior with an extended operating voltage of 1.4 V. According to the extended operating voltage, the energy density of the combined capacitor at a current density of 100 mA/cm^2 was found to be 11 Wh/kg. The combined capacitor exhibited high-energy density and stable power characteristics,
文摘Ni–Co coatings with various cobalt contents were electrodeposited from modified Watts bath. The effect of cobalt content on electrodeposition mechanism of the coatings was studied by electro-chemical impedance spectroscopy method (EIS). Surface morphology and crystallographic structure of the coatings were investigated by means of SEM and XRD. Mechanical properties of the coatings were determined using Vickers microhardness and tensile tests. It was found that with increasing the Co2+ions in electroplating bath, the charge transfer resistance (Rct)of Ni-Co film increased whereas the Warburg impedence decreased. This may be due to enhancement in coverage of cathode surface by Co(OH)2 and higher diffusion rate of metal ions towards cathode surface, respectively. Also, with increasing the cobalt content in the bath, cobalt content in the alloy coating increased anomalously and (111) texture consolidated gradually. With increasing the cobalt content up to 45% in alloy coating, the grain size decreased and consequently, hardness and strength of the alloy increased. Further enhancement of cobalt content up to 55% led to a little decrease in hardness and strength. The maximum ductility was observed for Ni-25%Co coating due to relatively small grain size and compact structure.
文摘Nanocrystalline cobalt coatings were produced from cobalt sulfate based electrolytes by using pulse current electrodeposition technique.The effects of bath composition and electrodeposition condition on current efficiency,morphology,structure and hardness of the coatings were investigated and the optimum deposition condition was determined.It was found that increment of cobalt sulfate concentration and sodium dodecyl sulfate(SDS)concentration in the bath had a negligible effect on microhardness of the coatings,while they were effective on electrodeposition current efficiency.Adding saccharin to electrodeposition bath decreased crystallite size of hexagonal close-packed(hcp)cobalt films and increased their microhardness without significant effect on current efficiency.Smoother and less defective coatings were also obtained from baths containing SDS and saccharin.The results revealed that both the current efficiency and microhardness were changed by variation of peak current density and duty cycle.Besides change of smooth morphology of the coatings to needle-shaped one,crystallite sizes and preferred orientation also varied with increasing the current density and duty cycle.
基金UGC, New Delhi, India, for the award of Post-Doctoral Fellowship to K.O.Nayana(Award No: F.15-1/2015-16/PDFWM-2015-17KAR-31527(SA-Ⅱ))
文摘Ni?Co3O4 composite coatings were electrodeposited on mild steel surface from a Watts-type bath in the presence of sodium lauryl sulfate(SLS).The dispersed Co3O4 particles in the presence of SLS have a greater tendency to move towards cathode and get incorporated in the coating.SLS modifies chemical composition,surface morphology and microstructure of the Ni?Co3O4 composite coating.The developed composite coating exhibits higher corrosion resistance and microhardness than the pure nickel coating.The loadings of bath solution with different concentrations of Co3O4 particles in the presence of SLS provide hydrophobic nature to the coating surface,which is much effective in enhancing the corrosion resistance of Ni?Co3O4 composite coating.The agglomeration of Co3O4 particles(>3 g/L)under high bath load condition develops defects and dislocation on the coating surface,which results in lower corrosion resistance of the deposit.The mechanical properties of the hydrophobic coatings were assessed by the linear abrasion test.
文摘The electrodeposition of nickel on steel and copper from alkaline NH4OH/NH4Cl buffer solutions was investigated by cyclic voltammetry (CV), chronopotentiometry (CP), chronoamperometry (CA) as well as an opto-digital microscope, glow-discharge optical emission spectroscopy (GD-OES), XRF, and SEM-EDS techniques. The aim was to obtain Ni coatings from weak alkaline solutions and to optimize the process. The electrolyte composition, pH, temperature as well as current and potential parameters of the process were optimized using the quality of Ni deposit as a criterion. The role of hydrogen evolution in the process was discussed. An influence of Co as an additive was also investigated. It was found that a small amount of Co catalyzes Ni deposition process and improves the quality and color of the deposit. Therefore, in the possible application, the Ni/Co codeposition should be seriously considered. It was also shown that for constant current deposition mode, the width of self-established potential range, revealed at the very beginning of the process by the chronopotentiometric E=f(t) curves, is related to the quality of the coating.
文摘The effects of pulse parameters on the cobalt content, surface morphologies and grain size of Zn-Co alloy deposits were studied using a pulse plating technique with a square-wave current containing reverse pulse. Average current density and reverse anodic current density amongst the variables investigated have very strong effects on the cobalt content in the Zn-Co alloy deposits. Grain size, surface appearance and internal stress in the deposit were improved significantly by introducing the reverse current. Varieties of Zn-Co alloy compositionally modulated multilayer (CMM) coatings with large differences in cobalt contents for different sublayers were electrodeposited by designing corresponding waveforms using a computer-aided pulse plater and characterized in terms of surface morphologies. Cross-sectional morphologies of the Zn-Co alloy CMM coatings, examined using field emission gun scanning electron microscopy (FEGSEM), confirmed the layered structure.
文摘This paper describes the study of cobalt growth mechanism obtained by electrodeposition method with variation of pH solution. The electrochemical impedance spectroscopy (EIS) and scanning electronic microscopy (SEM) results were possible conclude that the cobalt electrodeposited at pH = 5.40 presented approximately an area three times larger than the cobalt electrodeposited at pH = 2.70. In addition, the cobalt electrodeposited at pH = 2.70 had a value of charge transfer resistance equal to 151.6 f2"cm2 and the cobalt electrodeposited at pH = 5.40 this value corresponds to 67.4 f2'cm. This occurs because the increased in micro-porosity increase the diffusion of electrolyte on cobalt electrodeposits easily the corrosion process.