Co and Mo bimetallic nitrides supported on Mg(Al)O, MgO and γ-Al2O3 were prepared in temperatureprogrammed reactions with NH3. The surface morphology, chemical composition and catalytic activity for NH3 decompositi...Co and Mo bimetallic nitrides supported on Mg(Al)O, MgO and γ-Al2O3 were prepared in temperatureprogrammed reactions with NH3. The surface morphology, chemical composition and catalytic activity for NH3 decomposition on the supported Co and Mo bimetallic nitrides were studied by X-ray diffractometer (XRD), NH3 temperature-programmed desorption and mass spectrometer (NH3-TPD-MS), temperature-programmed desorption and mass spectrometer (TPD-MS), H2 temperature-programmed surface reaction (H2-TPSR) and activity test. The phases of Co3Mo3N and MoN could be formed on Mg(Al)O, MgO and Al2O3 during the nitridation, and they might be more uniformly dispersed on Mg(Al)O and MgO than on γ-Al2O3. Transition metallic nitrides are generally considered as potential catalysts for hydrogen-involving reactions due to the entrance of hydrogen atoms into subsurface and the lattice of metallic nitrides. The diffusion of nitrogen in the bulk and the structure transformation of Co and Mo nitride compounds occur during NH3-TPD, but the supported Co and Mo bimetallic nitrides are not easily reduced at H2 atmosphere. Co3Mo3N/Mg(Al)O catalyst exhibits the highest activity, while Co3Mo3N/Al2O3 exhibits the lowest activity for NH3 decomposition. Furthermore, the catalytic activity of Co and Mo bimetallic nitrides is not only much higher than that of supported single metallic nitride, but also highly dependent upon the surface acidity and BET surface area of support.展开更多
The hydrogenolysis of carbon–oxygen bonds is an important model reaction in upgrading biomass‐derived furanic compounds to transportation fuels.One of these model reactions,namelyconversion of5‐hydroxymethylfurfura...The hydrogenolysis of carbon–oxygen bonds is an important model reaction in upgrading biomass‐derived furanic compounds to transportation fuels.One of these model reactions,namelyconversion of5‐hydroxymethylfurfural(HMF)to the gasoline additive2,5‐dimethylfuran(DMF),isespecially attractive.In this study,bimetallic Cu‐Co catalysts supported on CeO2,ZrO2,and Al2O3were used for the selective hydrogenolysis of HMF to DMF.The structures of the fresh and usedcatalysts were studied using X‐ray diffraction,the Brunauer‐Emmett‐Teller method,transmissionelectron microscopy,temperature‐programmed reduction by H2,temperature‐programmed desorptionof NH3,and CHNS analysis.The structures were correlated with the catalytic activities.TheCu‐Co/CeO2catalyst produced mainly2,5‐bis(hydroxymethyl)furan via reduction of C=O bonds onlarge Cu particles.The Cu‐Co/Al2O3catalyst gave the best selectivity for DMF,as a result of a combinationof highly dispersed Cu,mixed copper–cobalt oxides,and suitable weak acidic sites.Cu‐Co/ZrO2had low selectivity for DMF and produced a combination of variousover‐hydrogenolysis products,including2,5‐dimethyltetrahydrofuran and5,5‐oxybis(methylene)‐bis(2‐methylfuran),because of the presence of strong acidic sites.The reaction pathways and effectsof various operating parameters,namely temperature,H2pressure,and time,were studied to enableoptimization of the selective conversion of HMF to DMF over the Cu‐Co/Al2O3catalyst.展开更多
文摘Co and Mo bimetallic nitrides supported on Mg(Al)O, MgO and γ-Al2O3 were prepared in temperatureprogrammed reactions with NH3. The surface morphology, chemical composition and catalytic activity for NH3 decomposition on the supported Co and Mo bimetallic nitrides were studied by X-ray diffractometer (XRD), NH3 temperature-programmed desorption and mass spectrometer (NH3-TPD-MS), temperature-programmed desorption and mass spectrometer (TPD-MS), H2 temperature-programmed surface reaction (H2-TPSR) and activity test. The phases of Co3Mo3N and MoN could be formed on Mg(Al)O, MgO and Al2O3 during the nitridation, and they might be more uniformly dispersed on Mg(Al)O and MgO than on γ-Al2O3. Transition metallic nitrides are generally considered as potential catalysts for hydrogen-involving reactions due to the entrance of hydrogen atoms into subsurface and the lattice of metallic nitrides. The diffusion of nitrogen in the bulk and the structure transformation of Co and Mo nitride compounds occur during NH3-TPD, but the supported Co and Mo bimetallic nitrides are not easily reduced at H2 atmosphere. Co3Mo3N/Mg(Al)O catalyst exhibits the highest activity, while Co3Mo3N/Al2O3 exhibits the lowest activity for NH3 decomposition. Furthermore, the catalytic activity of Co and Mo bimetallic nitrides is not only much higher than that of supported single metallic nitride, but also highly dependent upon the surface acidity and BET surface area of support.
文摘The hydrogenolysis of carbon–oxygen bonds is an important model reaction in upgrading biomass‐derived furanic compounds to transportation fuels.One of these model reactions,namelyconversion of5‐hydroxymethylfurfural(HMF)to the gasoline additive2,5‐dimethylfuran(DMF),isespecially attractive.In this study,bimetallic Cu‐Co catalysts supported on CeO2,ZrO2,and Al2O3were used for the selective hydrogenolysis of HMF to DMF.The structures of the fresh and usedcatalysts were studied using X‐ray diffraction,the Brunauer‐Emmett‐Teller method,transmissionelectron microscopy,temperature‐programmed reduction by H2,temperature‐programmed desorptionof NH3,and CHNS analysis.The structures were correlated with the catalytic activities.TheCu‐Co/CeO2catalyst produced mainly2,5‐bis(hydroxymethyl)furan via reduction of C=O bonds onlarge Cu particles.The Cu‐Co/Al2O3catalyst gave the best selectivity for DMF,as a result of a combinationof highly dispersed Cu,mixed copper–cobalt oxides,and suitable weak acidic sites.Cu‐Co/ZrO2had low selectivity for DMF and produced a combination of variousover‐hydrogenolysis products,including2,5‐dimethyltetrahydrofuran and5,5‐oxybis(methylene)‐bis(2‐methylfuran),because of the presence of strong acidic sites.The reaction pathways and effectsof various operating parameters,namely temperature,H2pressure,and time,were studied to enableoptimization of the selective conversion of HMF to DMF over the Cu‐Co/Al2O3catalyst.