期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于压缩感知的井下钻具状态预警方法研究
1
作者 李飞 王一帆 吕方兴 《石油机械》 北大核心 2024年第9期1-9,共9页
在井下振动信号向高频采集发展趋势下,井下振动采集模块需要存储和传输的数据量逐渐增大。为了解决井下数据存储和上传压力大的问题,并对井下钻具的运行状态进行预警,提出了将压缩感知理论和支持向量机(Support Vector Machine,SVM)模... 在井下振动信号向高频采集发展趋势下,井下振动采集模块需要存储和传输的数据量逐渐增大。为了解决井下数据存储和上传压力大的问题,并对井下钻具的运行状态进行预警,提出了将压缩感知理论和支持向量机(Support Vector Machine,SVM)模型融入于井下振动信号的存储、传输和状态预警中。研究了一种原子数自适应的稀疏字典建立方法,用少量稀疏特征表达完整信号;建立了观测矩阵将原始信号投影到低维空间上,实现信号的压缩方法;应用改进的布谷鸟算法(Improved Cuckoo Search,ICS)对SVM模型进行参数寻优,训练好的ICS-SVM模型实现了钻具状态预警。应用结果表明,压缩感知技术可以将井下振动数据压缩至12%,数据重构误差为0.1772,ICS-SVM模型对钻具状态预警成功率达到98%。研究结果达到了缓解井下振动数据存储和上传压力的目的,可帮助工作人员更好地进行实时钻井操作和状态预警。 展开更多
关键词 井下振动信号 高频采集 压缩感知 布谷鸟算法 支持向量机 钻具状态预警
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部