期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于高斯过程时间序列回归最优核函数和历史点数的锚杆支护钻进压力预测
1
作者 刘杰 《煤炭学报》 EI CAS CSCD 北大核心 2024年第S01期92-107,共16页
在井下锚杆支护过程中,及时了解工作压力对提高钻机使用寿命、保障煤矿生产安全具有重要的意义。针对目前锚杆支护中钻进压力反馈滞后、煤岩硬度分布非线性、现有方法不适用等问题,提出了一种基于高斯过程时间序列回归最优核函数和历史... 在井下锚杆支护过程中,及时了解工作压力对提高钻机使用寿命、保障煤矿生产安全具有重要的意义。针对目前锚杆支护中钻进压力反馈滞后、煤岩硬度分布非线性、现有方法不适用等问题,提出了一种基于高斯过程时间序列回归最优核函数和历史点数的锚杆支护钻进压力预测方法。这种方法通过高斯随机过程、核函数以及贝叶斯理论进行锚杆支护时间序列煤岩压力预测,是一种对非线性问题适应性高、具有概率意义输出的机器学习方法。以巷道掘进过程中钻箱钻进1000 mm时的钻进压力试验数据作为最优核函数和历史点数的筛选样本,以10种核函数(E、SE、RQ、Matern3/2、Matern5/2、ARDE、ARDSE、ARDRQ、ARDMatern3/2、ARDMatern5/2)和7种历史点数(8、10、12、14、16、18、20)作为筛选对象,通过负对数边缘似然函数为极小化目标函数自适应获取最优超参数,以单步外推的方式和训练集、测试集7∶3的比例对筛选样本进行了70次数值解算。分别以测试集可决系数(R^(2))、测试集均方根误差(RMSE)、测试集平均绝对误差(MAE)为数值解算评价指标,获取了4种锚杆支护钻进压力预测策略的最优核函数和最优历时点数组合(Matern5/2+历时点数10、ARDMatern5/2+历史点数10、SE+历时点数18、RQ+历史点数18)。基于最小化计算量,选取最优核函数为Matern5/2、最优历史点数为10,再次分别对巷道掘进过程中钻箱钻进1200、2400、3000 mm的钻进压力试验数据进行数值解算,给出95%置信区间下锚杆支护钻进压力预测分布。所提出的方法对于钻箱钻进1200 mm的钻进压力的预测数据,R^(2)为0.61317,MAE为0.026957,区间平均宽度百分比为3.072%;所提出的方法对于钻箱钻进2400 mm的钻进压力的预测数据,R^(2)为0.93118,MAE为0.010895,区间平均宽度百分比为0.581%;所提出的方法对于钻箱钻进3000 mm的钻进压力的预测数据,R^(2)为0.99647,MAE为0.0091847,区间平均宽度百分比为0.614%。最终发现,不同核函数和历史点数的组合选择会有较大差距的预测效果,是不可忽略的两个重要因素,本研究方法对围岩硬度分布均匀的数据波段预测结果优秀,对围岩硬度突变的数据波段预测结果在可接受范围内。 展开更多
关键词 锚杆支护 钻进压力预测 高斯过程回归 核函数 历时点数 置信区间
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部