Molybdenum sulfides are promising electrocatalysts for the hydrogen evolution reaction(HER).Sand Mo‐related species have been proposed as the active site for forming adsorbed hydrogen to initiate the HER;however,the ...Molybdenum sulfides are promising electrocatalysts for the hydrogen evolution reaction(HER).Sand Mo‐related species have been proposed as the active site for forming adsorbed hydrogen to initiate the HER;however,the nature of the interaction between Mo centers and S ligands is unclear.Further,the development of cost‐effective water‐splitting systems using neutral water as a proton source for H2evolution is highly desirable,whereas the mechanism of the HER at neutral pH is rarely discussed.Here,the structural change in the Mo?Mo and S?S species in a synthesized molybdenum sulfide was monitored at neutral pH using in situ electrochemical Raman spectroscopy.Analysis of the potential dependent Raman spectra revealed that the band assigned to a terminal S?S species emerged along with synchronized changes in the frequency of the Mo?Mo,Mo3?μ3S,and Mo?S vibrational bands.This indicates that Mo?Mo bonds and terminal S?S ligands play synergistic roles in facilitating hydrogen evolution,likely via the internal reorganization of trinuclear Mo3?thio species.The nature and role of metal‐ligand interactions in the HER revealed in this study demonstrated a mechanism that is distinct from those reported previously in which the S or Mo sites function independently.展开更多
We report a systematic study of the etching of MoSs crystals by using XeF2 as a gaseous reactant. By controlling the etching process, monolayer MoS2 with uniform morphology can be obtained. The Raman and photoluminesc...We report a systematic study of the etching of MoSs crystals by using XeF2 as a gaseous reactant. By controlling the etching process, monolayer MoS2 with uniform morphology can be obtained. The Raman and photoluminescence spectra of the resulting material were similar to those of exfoliated MoS2. Utilizing this strategy, different patterns such as a Hall bar structure and a hexagonal array can be realized. Furthermore, the etching mechanism was studied by introducing graphene as an etching mask. We believe our technique opens an easy and controllable way of etching MoS2, which can be used to fabricate complex nanostructures, such as nanoribbons, quantum dots, and transistor structures. This etching process using XeF2 can also be extended to other interesting two-dimensional crystals.展开更多
We fabricate a free-standing few-layer molybdenum disulfide (MoS2)-polymer composite by liquid phase exfoliation of chemically pristine MoS2 crystals and use this to demonstrate a wideband tunable, ultrafast mode-lo...We fabricate a free-standing few-layer molybdenum disulfide (MoS2)-polymer composite by liquid phase exfoliation of chemically pristine MoS2 crystals and use this to demonstrate a wideband tunable, ultrafast mode-locked fiber laser. Stable, picosecond pulses, tunable from 1,535 nm to 1,565 nm, are generated, corresponding to photon energies below the MoS2 material bandgap. These results contribute to the growing body of work studying the nonlinear optical properties of transition metal dichalcogenides that present new opportunities for ultrafast photonic applications.展开更多
文摘Molybdenum sulfides are promising electrocatalysts for the hydrogen evolution reaction(HER).Sand Mo‐related species have been proposed as the active site for forming adsorbed hydrogen to initiate the HER;however,the nature of the interaction between Mo centers and S ligands is unclear.Further,the development of cost‐effective water‐splitting systems using neutral water as a proton source for H2evolution is highly desirable,whereas the mechanism of the HER at neutral pH is rarely discussed.Here,the structural change in the Mo?Mo and S?S species in a synthesized molybdenum sulfide was monitored at neutral pH using in situ electrochemical Raman spectroscopy.Analysis of the potential dependent Raman spectra revealed that the band assigned to a terminal S?S species emerged along with synchronized changes in the frequency of the Mo?Mo,Mo3?μ3S,and Mo?S vibrational bands.This indicates that Mo?Mo bonds and terminal S?S ligands play synergistic roles in facilitating hydrogen evolution,likely via the internal reorganization of trinuclear Mo3?thio species.The nature and role of metal‐ligand interactions in the HER revealed in this study demonstrated a mechanism that is distinct from those reported previously in which the S or Mo sites function independently.
文摘We report a systematic study of the etching of MoSs crystals by using XeF2 as a gaseous reactant. By controlling the etching process, monolayer MoS2 with uniform morphology can be obtained. The Raman and photoluminescence spectra of the resulting material were similar to those of exfoliated MoS2. Utilizing this strategy, different patterns such as a Hall bar structure and a hexagonal array can be realized. Furthermore, the etching mechanism was studied by introducing graphene as an etching mask. We believe our technique opens an easy and controllable way of etching MoS2, which can be used to fabricate complex nanostructures, such as nanoribbons, quantum dots, and transistor structures. This etching process using XeF2 can also be extended to other interesting two-dimensional crystals.
文摘We fabricate a free-standing few-layer molybdenum disulfide (MoS2)-polymer composite by liquid phase exfoliation of chemically pristine MoS2 crystals and use this to demonstrate a wideband tunable, ultrafast mode-locked fiber laser. Stable, picosecond pulses, tunable from 1,535 nm to 1,565 nm, are generated, corresponding to photon energies below the MoS2 material bandgap. These results contribute to the growing body of work studying the nonlinear optical properties of transition metal dichalcogenides that present new opportunities for ultrafast photonic applications.