Hot dip galvanized steel sheets were passivated by molybdate aqueous solution containing 10 g/L Na 2MoO 4·2H 2O, and the growth behavior and corrosion resistance of the passivation film were investigated. In the ...Hot dip galvanized steel sheets were passivated by molybdate aqueous solution containing 10 g/L Na 2MoO 4·2H 2O, and the growth behavior and corrosion resistance of the passivation film were investigated. In the initial stage of passivation, the mass gain of film increases with passivation time proportionally. The film grows up more quickly and is apt to cracking at grain boundaries of zinc, then the cracks spread gradually on the whole surface of the film, and eventually the film will flake off with the increasing of film thickness. XPS results indicate that Mo compounds are present in Mo(Ⅵ) state on the surface of the film, and Mo(Ⅵ) and Mo(Ⅳ) states inside the film. NSS test shows that, the corrosion resistance of the passivation film decreases as the cracks occur, but in AASS test, the thicker the film is, the better the corrosion resistance is, the cracks of film have little effect on the corrosion resistance.展开更多
α-Fe2O3 thin films have been synthesized and used as photoanodes for photo-electrochemical (PEC) water oxidation. Molybdate was introduced to mediate hematite thin films via two synthesis routes (namely in situin sit...α-Fe2O3 thin films have been synthesized and used as photoanodes for photo-electrochemical (PEC) water oxidation. Molybdate was introduced to mediate hematite thin films via two synthesis routes (namely in situin situ mediation and ex situ modification). Through the in situ mediation process, the morphology and film thickness could be changed significantly due to the addition of MoO42-, while for the ex situ modification, the PEC performance of the hematite has been greatly improved without changing the nanorod morphology. Various characterizations such as UV-Vis absorption, transmission electronic microscopy, scanning electronic microscopy, Mott-Schottky, electrochemical impedance spectroscopy were conducted and the PEC performances were investigated.展开更多
文摘Hot dip galvanized steel sheets were passivated by molybdate aqueous solution containing 10 g/L Na 2MoO 4·2H 2O, and the growth behavior and corrosion resistance of the passivation film were investigated. In the initial stage of passivation, the mass gain of film increases with passivation time proportionally. The film grows up more quickly and is apt to cracking at grain boundaries of zinc, then the cracks spread gradually on the whole surface of the film, and eventually the film will flake off with the increasing of film thickness. XPS results indicate that Mo compounds are present in Mo(Ⅵ) state on the surface of the film, and Mo(Ⅵ) and Mo(Ⅳ) states inside the film. NSS test shows that, the corrosion resistance of the passivation film decreases as the cracks occur, but in AASS test, the thicker the film is, the better the corrosion resistance is, the cracks of film have little effect on the corrosion resistance.
基金supported by the National Natural Science Foundation of China(No.21671148,No.21576215,and No.21503147)Research Project of Tianjin Municipal Education Committee(2017KJ261)
文摘α-Fe2O3 thin films have been synthesized and used as photoanodes for photo-electrochemical (PEC) water oxidation. Molybdate was introduced to mediate hematite thin films via two synthesis routes (namely in situin situ mediation and ex situ modification). Through the in situ mediation process, the morphology and film thickness could be changed significantly due to the addition of MoO42-, while for the ex situ modification, the PEC performance of the hematite has been greatly improved without changing the nanorod morphology. Various characterizations such as UV-Vis absorption, transmission electronic microscopy, scanning electronic microscopy, Mott-Schottky, electrochemical impedance spectroscopy were conducted and the PEC performances were investigated.