正浮选法生产氯化钾其钾离子收率低,主要影响因素为分解工序的原矿类型、加水量和温度等。以实际生产为基础,以分解工序为对象,研究影响产品质量、钾收率的各因素,并针对不同的原矿做尾液回用实验。结果表明:当分解完成母液点相同时,原...正浮选法生产氯化钾其钾离子收率低,主要影响因素为分解工序的原矿类型、加水量和温度等。以实际生产为基础,以分解工序为对象,研究影响产品质量、钾收率的各因素,并针对不同的原矿做尾液回用实验。结果表明:当分解完成母液点相同时,原矿的钠钾比越大,产品质量越低,二者呈对数关系;原矿的镁钾比越大,钾收率越低,二者呈线性关系;钾收率随分解工序加水量增大而降低,原矿的镁钾比越大,钾收率随加水量增大而降低的幅度就越大;尾液回用时,因原矿的氯化镁与(氯化钾+氯化钠)的质量比不同,要使原矿在15 m in内完全分解,需控制不同的母液点;当加水量相同时,原矿的镁钾比越大,随温度升高钾收率降低的幅度就越大。展开更多
Several physical and chemical detection methods were used to study the basic properties of sintering dust (ESP dust) collected from Baogang Steel Corporation. The result shows that the major constituents of the ESP ...Several physical and chemical detection methods were used to study the basic properties of sintering dust (ESP dust) collected from Baogang Steel Corporation. The result shows that the major constituents of the ESP dust are KCl, NaCl, Fe2O_3 and Fe3O_4. Water leaching experiment on the sintering dust shows that KCl in the ESP dust can be separated and recovered by water leaching and fractional crystallization. Component analysis of leaching solution indicates that the massive calcium sulfate in the leaching solution should be removed first in order to obtain the pure potassium salt. In order to provide theoretical guidance to inhibit the dissolution of calcium ions from the sintering dust, the water leaching experiment of ESP dust and the dissolution behavior of CaSO_4 in the potassium chloride, sodium chloride, potassium sulfate and their mixed salt solution were studied. It is found that, a lower liquid-solid ratio should be chosen in the leaching process to inhibit the dissolution of calcium sulfate dehydrate. Using sodium carbonate solution as a precipitating agent, the influences of the concentration of sodium carbonate solution, reaction temperature, stirring speed and equilibrium time on the preparation of the spherical calcium carbonate were studied. Spherical calcium carbonate with good dispersing performance and grain size distribution in nanometer range of less than 10 μm was obtained. Furthermore, a potassium recovery process with joint production of spherical calcium carbonate was designed. This process is technically viable and considerable in economic benefit.展开更多
文摘正浮选法生产氯化钾其钾离子收率低,主要影响因素为分解工序的原矿类型、加水量和温度等。以实际生产为基础,以分解工序为对象,研究影响产品质量、钾收率的各因素,并针对不同的原矿做尾液回用实验。结果表明:当分解完成母液点相同时,原矿的钠钾比越大,产品质量越低,二者呈对数关系;原矿的镁钾比越大,钾收率越低,二者呈线性关系;钾收率随分解工序加水量增大而降低,原矿的镁钾比越大,钾收率随加水量增大而降低的幅度就越大;尾液回用时,因原矿的氯化镁与(氯化钾+氯化钠)的质量比不同,要使原矿在15 m in内完全分解,需控制不同的母液点;当加水量相同时,原矿的镁钾比越大,随温度升高钾收率降低的幅度就越大。
基金Projects(2012AA062502,2012AA06A118)supported by the National High-tech Research and Development Program of China
文摘Several physical and chemical detection methods were used to study the basic properties of sintering dust (ESP dust) collected from Baogang Steel Corporation. The result shows that the major constituents of the ESP dust are KCl, NaCl, Fe2O_3 and Fe3O_4. Water leaching experiment on the sintering dust shows that KCl in the ESP dust can be separated and recovered by water leaching and fractional crystallization. Component analysis of leaching solution indicates that the massive calcium sulfate in the leaching solution should be removed first in order to obtain the pure potassium salt. In order to provide theoretical guidance to inhibit the dissolution of calcium ions from the sintering dust, the water leaching experiment of ESP dust and the dissolution behavior of CaSO_4 in the potassium chloride, sodium chloride, potassium sulfate and their mixed salt solution were studied. It is found that, a lower liquid-solid ratio should be chosen in the leaching process to inhibit the dissolution of calcium sulfate dehydrate. Using sodium carbonate solution as a precipitating agent, the influences of the concentration of sodium carbonate solution, reaction temperature, stirring speed and equilibrium time on the preparation of the spherical calcium carbonate were studied. Spherical calcium carbonate with good dispersing performance and grain size distribution in nanometer range of less than 10 μm was obtained. Furthermore, a potassium recovery process with joint production of spherical calcium carbonate was designed. This process is technically viable and considerable in economic benefit.