The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal a...The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal atoms to form active centers on ferroelectric material In_(2)Se_(3).During the polariza-tion switching process,the difference in surface electrostatic potential leads to a redistribution of electronic states.This affects the interaction strength between the adsorbed small molecules and the catalyst substrate,thereby altering the reaction barrier.In addition,the surface states must be considered to prevent the adsorption of other small molecules(such as *O,*OH,and *H).Further-more,the V@↓-In_(2)Se_(3) possesses excellent catalytic properties,high electrochemical and thermody-namic stability,which facilitates the catalytic process.Machine learning also helps us further ex-plore the underlying mechanisms.The systematic investigation provides novel insights into the design and application of two-dimensional switchable ferroelectric catalysts for various chemical processes.展开更多
The electronic property of pyrite supercell containing As,Se,Te,Co or Ni hetero atoms were calculated using density functional theory(DFT),and the reactivities of pyrite with oxygen and xanthate were discussed by fr...The electronic property of pyrite supercell containing As,Se,Te,Co or Ni hetero atoms were calculated using density functional theory(DFT),and the reactivities of pyrite with oxygen and xanthate were discussed by frontier orbital methods.The cell volume expands due to the presence of impurity.Co and Ni mainly affect the bands near Fermi levels,while As mainly affects the shallow and deep valence bands,and Se and Te mainly affect the deep valence bands.Electronic density analysis suggests that there exists a strong covalent interaction between hetero atom and its surrounding atoms.By frontier orbital calculation,it is suggested that As,Co and Ni have greater influence on the HOMO and LUMO of pyrite than Se and Te.In addition,pyrite containing As,Co or Ni is easier to oxidize by oxygen than pyrite containing Se or Te,and pyrite containing Co or Ni has greater interaction with collector.These are in agreement with the observed pyrite practice.展开更多
The electron structure of FeS2 surface (100) was computed by DFT (density function theory) and the process of electron transfer in sulfide flotation was simulated through ab-initio calculation. The results show th...The electron structure of FeS2 surface (100) was computed by DFT (density function theory) and the process of electron transfer in sulfide flotation was simulated through ab-initio calculation. The results show that the interaction between xanthate and FeS2 is controlled by the energy of valence band. The products and degree of the reaction depend on the density of state of valence band and concentration election structure on the surface of of positive hole in valence band. Interaction between xanthate and pyrite can be changed by modifying the of the surface of pyrite. Xanthate is adsorbed on the surface of intrinsic pyrite. But the amount of xanthate adsorbed the pyrite with sulfur vacancy is more than that on the surface of the intrinsic pyrite due to the higher electron and vacancy density. Xanthate is not adsorbed on the surface of pyrite with Fe vacancy because of its high Fermi energy展开更多
The geometry optimizations and the single point energy calculations of iron tetraphenylporphyrin chloride Fe(TPP)Cl and iron tetraphenylporphyrin chloride (Fe(TPP)Cl), iron pentafluorophenylporphyrin chloride ...The geometry optimizations and the single point energy calculations of iron tetraphenylporphyrin chloride Fe(TPP)Cl and iron tetraphenylporphyrin chloride (Fe(TPP)Cl), iron pentafluorophenylporphyrin chloride (Fe(TPPF20)Cl) were carried out by using the Density Functional Theory (DFT) UB3LYP with STO-3G^* and 6-31G^* basis sets, respectively. The electronic properties and the structures of high-lying molecular orbitals were analyzed in detail. The results show that partial spin is transferred from the Fe atom to the porphyrin ring and some electron with the spin opposite to the unpaired electron on the Fe atom is transferred from the porphyrin ring to the Fe atom. The π and σ-type bonding between the Fe atom and the porphyin ring cause the transfer. The fluorination enhances the electron transfer and the chemical stability of the complex. The high stability is important for the complex possessing high catalytic activity. The catalysis mechanism of oxygen molecule activation on the complex surface is also discussed based on the symmetry of the molecular orbitals.展开更多
As a novel collector, O-isopropyl-N,N-diethyl thionocarbamate(IPDTC) was designed and synthesized for copper-sulfur flotation separation. Density functional theory calculations were performed to investigate the electr...As a novel collector, O-isopropyl-N,N-diethyl thionocarbamate(IPDTC) was designed and synthesized for copper-sulfur flotation separation. Density functional theory calculations were performed to investigate the electronic structures of IPDTC. The results showed that IPDTC had higher energy of the highest occupied molecular orbital but lower electronegativity than O-isopropyl-N-ethyl thionocarbamate(Z-200). It was predicted that IPDTC had strong collection ability according to the reaction energy criteria. Flotation results demonstrated that the collecting ability of IPDTC to chalcopyrite and pyrite was stronger than that of Z-200. Then, the flotation mechanism was analyzed by measurements of surface tension, adsorption capacity, XPS, FTIR and zeta potential. These results indicated that IPDTC could reduce the solution surface tension. The adsorption capacity of IPDTC on chalcopyrite was higher than that on pyrite, consistent with the results of the flotation tests. FTIR, zeta potential and XPS results also demonstrated that IPDTC was strongly absorbed on the chalcopyrite surface by formation of Cu—S—C bonds, but showed a weak affinity on the pyrite surface.展开更多
An FeOx‐based Pt single‐atom catalyst(SAC),Pt1/FeOx,has stimulated significant recent interest owing to its extraordinary activity toward CO oxidation.The concept of SAC has also been successfully extended to other ...An FeOx‐based Pt single‐atom catalyst(SAC),Pt1/FeOx,has stimulated significant recent interest owing to its extraordinary activity toward CO oxidation.The concept of SAC has also been successfully extended to other FeOx supported transition metal systems both experimentally and theoretically.However,the FeOx substrate itself(denoted by Fe1/FeOx following the same nomenclature of Pt1/FeOx)as a typical transition metal oxide possesses a very low catalytic activity toward CO oxidation,although it can be viewed as Fe1/FeOx SAC.Here,to understand the catalytic mechanism of FeOx‐based SACs for CO oxidation,we have performed density functional theory calculations on Pt1/FeOx and Fe1/FeOx for CO oxidation to address the differences between these two SACs in terms of the catalytic mechanism of CO oxidation and the chemical behavior of the catalysts.Our calculation results indicated that the catalytic cycle of Fe1/FeOx is much more difficult to accomplish than that of SAC Pt1/FeOx because of a high activation barrier(1.09eV)for regeneration of the oxygen vacancy formed when the second CO2molecule desorbs from the surface.Moreover,density of states and Bader charge analysis revealed differences in the catalytic performance for CO oxidation by the SACs Fe1/FeOx and Pt1/FeOx.This work provides insights into the fundamental interactions between the single‐atom Pt1and FeOx substrate,and the exceptional catalytic performance of this system for CO oxidation.展开更多
We study squeezed properties of magnon squeezed thermal spin states by using the distribution of Q function in the ferromagnet. It is found that the distribution of Q function strongly depends on the temperature T and...We study squeezed properties of magnon squeezed thermal spin states by using the distribution of Q function in the ferromagnet. It is found that the distribution of Q function strongly depends on the temperature T and coupling parameter γ. Below the transition temperature Tc, the distribution Q function in the squeezed thermal spin state presents a richer structure than in the normal state. Non-classical effects have been observed. In the transition from the normal to the squeezed thermal spin state, the phase symmetry of the magnon system is spontaneously broken.展开更多
The quantum electronic transport through a precessing magnetic spin coupled to noncollinearly polarized ferromagnetic leads (F-MS-F) has been studied in this paper. The nonequilibrium Green function approach is used...The quantum electronic transport through a precessing magnetic spin coupled to noncollinearly polarized ferromagnetic leads (F-MS-F) has been studied in this paper. The nonequilibrium Green function approach is used to calculate local density of states (LDOS) and current in the presence of external bias. The characters of LDOS and the electronic current are obtained. The tunneling current is investigated for different precessing angle and different configurations of the magnetization of the leads. The investigation revea/s that when the precessing angle takes θ 〈 π /2 and negative bias is applied, the resonant tunneling current appears, otherwise, it appears when positive bias is applied. When the leads are totally polarized and the precessing angel takes O, the tunneling current changes with the configuration of two leads; and it becomes zero when the two leads are antiparallel.展开更多
The multisublattice Green's function technique is applied to study the magnetic properties of a mixed spin-2 and spin-5/2 Heisenberg ferrimagnetic system on a two-dimensional honeycomb lattice. The role of the differ...The multisublattice Green's function technique is applied to study the magnetic properties of a mixed spin-2 and spin-5/2 Heisenberg ferrimagnetic system on a two-dimensional honeycomb lattice. The role of the different interactions in the Hamiltonian is explored. When only the nearest-neighbor interaction and the single-ion anisotropy are included, our results indicate that there are compensation points at finite temperatures. When the next-nearest-neighbor interaction exceeds a minimum value that depends on the other parameters in the Hamiltonian, the compensation point disappears. The next-nearest-neighbor interaction has the effect of changing the compensation temperature.展开更多
Wheel/rail relationship is a fundamental problem of railway system. Wear of wheel profiles has great effect on vehicle performance. Thus, it is important not just for the analysis of wear characteristics but for its p...Wheel/rail relationship is a fundamental problem of railway system. Wear of wheel profiles has great effect on vehicle performance. Thus, it is important not just for the analysis of wear characteristics but for its prediction. Actual wheel profiles of the high-speed trains on service were measured in the high-speed line and the wear characteristics were analyzed which came to the following results. The wear location was centralized from-15 mm to 25 mm. The maximum wear value appeared at the area of 5 mm from tread center far from wheel flange and it was less than 1.5 mm. Then, wheel wear was fitted to get the polynomial functions on different locations and operation mileages. A binary numerical prediction model was raised to predict wheel wear. The prediction model was proved by vehicle system dynamics and wheel/rail contact geometry. The results show that the prediction model can reflect wear characteristics of measured profiles and vehicle performances.展开更多
The phase transition of Heisenberg fluid has been investigated with the density functional theory in mean-field approximation (MF). The matrix of the second derivatives of the grand canonical potential Ω with respe...The phase transition of Heisenberg fluid has been investigated with the density functional theory in mean-field approximation (MF). The matrix of the second derivatives of the grand canonical potential Ω with respect to the particle density fluctuations and the magnetization fluctuations has been investigated and diagonalized. The smallest eigenvalue being 0 signalizes the phase instability and the related eigenvector characterizes this phase transition. We find a Curie line where the order parameter is pure magnetization and a spinodal where the order parameter is a mixture of particle density and magnetization. Along the spinodal, the character of phase instability changes continuously from predominant condensation to predominant ferromagnetic phase transition with the decrease of total density. The spinodal meets the Curie line at the critical endpoint with the reduced density p*=pσ3=0.224 and the reduced temperature T* =kT/ε=1.87 (σ is the diameter of Heisenberg hard sphere and e is the coupling constant).展开更多
The electronic structure and the magnetic properties of the molecule-based ferromagnets Cu[C(CN)3]2 and Mn[C(CN)3]2 are studied according to first principles within density-functional theory (DFT) and the full p...The electronic structure and the magnetic properties of the molecule-based ferromagnets Cu[C(CN)3]2 and Mn[C(CN)3]2 are studied according to first principles within density-functional theory (DFT) and the full potential linearized augmented plane wave (FP-LAPW) method. The total energy, atomic spin magnetic moments, and density of states (DOS) of Cu[C(CN)3]2 and Mn[C(CN)3]2 are all calculated. The calculations reveal that the compounds have a stable ferromagnetic ground state and half-metallic properties. The total spin magnetic moment is 1.0μB for Cu[C(CN)3]2 and 5.0#B for Mn[C(CN)3]e per molecule, the magnetic moment mainly comes from metal atoms, although there is a slight contribution from N and C atoms.展开更多
We perform first-principles simulations on a type of two-dimensional metal-organic nanosheet derived from the recently reported manganese bis-dithiolene Mn3C12S12 [Nanoscale 5, 10404 (2013)] and manganese bis-diamin...We perform first-principles simulations on a type of two-dimensional metal-organic nanosheet derived from the recently reported manganese bis-dithiolene Mn3C12S12 [Nanoscale 5, 10404 (2013)] and manganese bis-diamine Mn3C12N12H12 [ChemPhysChem 16, 614 (2015)] mono-layers. By coordinating chalcogen (S or O) atoms and -NH- group to Mn atoms with trans- or cis-structures and preserving space inversion symmetry, four configurations of this type of nanosheet are obtained: trans-manganese dithiolene-diamine Mn3(C6S3N3H3)2, cis- manganese dithiolene-diamine Mn3(C6S6)(C6N6H6), trans-manganese dihydroxyl-diamine Mn3(C6O3N3H3)2, and cis-manganese dihydroxyl-diamine Mn3(C6O6)(C6N6H6). The ge- ometric con guration, electronic structure and magnetic properties of these metal-organic nanosheets are systematically explored by density functional theory calculations. The cal- culated results show that Mn3(C6S3N3H3)2, Mn3(C6O3N3H3)2 and Mn3(C6O6)(C6N6H6) monolayers exhibit half-metallicity and display strong ferromagnetism with Curie transition temperatures near and even beyond room temperature, and Mn3(C6S6)(C6N6H6) monolayer is a semiconductor with small energy gap and spin frustration ground state. The mechanisms for the above properties, especially in uences of diflerent groups (atoms) substitution and coordination style on the magnetism of the nanosheet, are also discussed. The predicted two-dimensional metal-organic nanosheets have great promise for the future spintronics ap-plications.展开更多
Based on the critical unstable of both crystal and magnetic structure of Gd-intermetallic compound near the competition of two strongly independent subsystem ("local 4f7" and "conduction electron concentration")...Based on the critical unstable of both crystal and magnetic structure of Gd-intermetallic compound near the competition of two strongly independent subsystem ("local 4f7" and "conduction electron concentration"), a new QPT (quantum point transition) is predicted by calculation of: (1) The band structure and density of state by density functional theory where a strong narrowing fluidity of fermions around EF with shifted to negative value "-0.8 eV "is observable in the Gd-intermetalliccompound system while in the Y-case, it is not dominated. An antiferromagnetic state on the fluidity of conduction band can be investigated; (2) The internal magnetic field due to short range exchange interaction Jij between the nearest neighbor of local magnetic moment of stable s-state of Gd (L = 0) through the mean field approximation and of Eigenvalue-Eigenfunction ~.(k) are calculated. While a strong negative value of Jy is predicted, the eigenvalue L(k) of the system shows a strong antiferromagnetic phase in the reciprocal lattice direction 〈010〉, 〈001〉 in the correlation length 3.38 ~A. Although the antiferromagnetic state at Rc 〈_ 3.38 °A is a puzzle but it is completely dominated at Rc = 9 °A after passing through the competition between ).λmin(O) and λmin(π) in the ranger of 3.2 °A 〈 Rc 〈 9 °A. Since both of the antiferromagnetic subsystems are sensitive to the predicted KF, the effect of decreasing of conduction electron is proposed to investigate, the change of the antiferromagnetic ordering state to the competition of ferromagnetic state (in direction 〈010〉) and antiferromagnetic state (in direction 〈001 〉 and 〈 100〉) resulted to paramagnetic state in the long range Rc = 9 °A.展开更多
In this paper, we apply the two-time Green's function method, and provide a simple way to study themagnetic properties of one-dimensional spin-(S, s) Heisenberg ferromagnets.The magnetic susceptibility and correla...In this paper, we apply the two-time Green's function method, and provide a simple way to study themagnetic properties of one-dimensional spin-(S, s) Heisenberg ferromagnets.The magnetic susceptibility and correlationfunctions are obtained by using the Tyablikov decoupling approximation.Our results show that the magnetic susceptibilityand correlation length are a monotonically decreasing function of temperature regardless of the mixed spins.It isfound that in the case of S = s, our results of one-dimensional mixed-spin model is reduced to be those of the isotropicferromagnetic Heisenberg chain in the whole temperature region.Our results for the susceptibility are in agreement withthose obtained by other theoretical approaches.展开更多
Using an equation-of-motion technique, we theoretically study the Kondo-Fano effect in the T-shaped double quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian. We calculate the density of state...Using an equation-of-motion technique, we theoretically study the Kondo-Fano effect in the T-shaped double quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian. We calculate the density of states in this system by solving Green function. Our results reveal that the density of states show some noticeable characteristics not only depending upon the interdot coupling tab, the energy level eal of the side coupled quantum dot QDb, and the relative angle θ of magnetic moment M, but also the asymmetry parameter a in ferromagnetic leads and so on. All these parameters greatly influence the density of states of the eentral quantum dot QDa. This system is a possible candidate for spin valve transistors and may have potential applications in the spintronies.展开更多
文摘The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal atoms to form active centers on ferroelectric material In_(2)Se_(3).During the polariza-tion switching process,the difference in surface electrostatic potential leads to a redistribution of electronic states.This affects the interaction strength between the adsorbed small molecules and the catalyst substrate,thereby altering the reaction barrier.In addition,the surface states must be considered to prevent the adsorption of other small molecules(such as *O,*OH,and *H).Further-more,the V@↓-In_(2)Se_(3) possesses excellent catalytic properties,high electrochemical and thermody-namic stability,which facilitates the catalytic process.Machine learning also helps us further ex-plore the underlying mechanisms.The systematic investigation provides novel insights into the design and application of two-dimensional switchable ferroelectric catalysts for various chemical processes.
基金Project (50864001) supported by the National Natural Science Foundation of China
文摘The electronic property of pyrite supercell containing As,Se,Te,Co or Ni hetero atoms were calculated using density functional theory(DFT),and the reactivities of pyrite with oxygen and xanthate were discussed by frontier orbital methods.The cell volume expands due to the presence of impurity.Co and Ni mainly affect the bands near Fermi levels,while As mainly affects the shallow and deep valence bands,and Se and Te mainly affect the deep valence bands.Electronic density analysis suggests that there exists a strong covalent interaction between hetero atom and its surrounding atoms.By frontier orbital calculation,it is suggested that As,Co and Ni have greater influence on the HOMO and LUMO of pyrite than Se and Te.In addition,pyrite containing As,Co or Ni is easier to oxidize by oxygen than pyrite containing Se or Te,and pyrite containing Co or Ni has greater interaction with collector.These are in agreement with the observed pyrite practice.
基金Project(20047) supported by the Foundation of National Excellent Doctoral Dissertation of China Project(50204013)supported by the National Natural Science Foundation of China
文摘The electron structure of FeS2 surface (100) was computed by DFT (density function theory) and the process of electron transfer in sulfide flotation was simulated through ab-initio calculation. The results show that the interaction between xanthate and FeS2 is controlled by the energy of valence band. The products and degree of the reaction depend on the density of state of valence band and concentration election structure on the surface of of positive hole in valence band. Interaction between xanthate and pyrite can be changed by modifying the of the surface of pyrite. Xanthate is adsorbed on the surface of intrinsic pyrite. But the amount of xanthate adsorbed the pyrite with sulfur vacancy is more than that on the surface of the intrinsic pyrite due to the higher electron and vacancy density. Xanthate is not adsorbed on the surface of pyrite with Fe vacancy because of its high Fermi energy
基金ACKN0WLEDGMENT This work was supported by the National Natural Science Foundation of China (No.20443002) and the Science Foundations of Henan Province for 0utstanding Young Scientists (No.0612002600)
文摘The geometry optimizations and the single point energy calculations of iron tetraphenylporphyrin chloride Fe(TPP)Cl and iron tetraphenylporphyrin chloride (Fe(TPP)Cl), iron pentafluorophenylporphyrin chloride (Fe(TPPF20)Cl) were carried out by using the Density Functional Theory (DFT) UB3LYP with STO-3G^* and 6-31G^* basis sets, respectively. The electronic properties and the structures of high-lying molecular orbitals were analyzed in detail. The results show that partial spin is transferred from the Fe atom to the porphyrin ring and some electron with the spin opposite to the unpaired electron on the Fe atom is transferred from the porphyrin ring to the Fe atom. The π and σ-type bonding between the Fe atom and the porphyin ring cause the transfer. The fluorination enhances the electron transfer and the chemical stability of the complex. The high stability is important for the complex possessing high catalytic activity. The catalysis mechanism of oxygen molecule activation on the complex surface is also discussed based on the symmetry of the molecular orbitals.
基金financial supports from the Open Foundation of State Key Laboratory of Mineral Processing,China (Nos.BGRIMM-KJSKL-2019-06,BGRIMMKJSKL-2022-13)the Open Fund of State Key Laboratory of Comprehensive Utilization of Low-Grade,China (No.ZJKY2017(B)KFJJ003)。
文摘As a novel collector, O-isopropyl-N,N-diethyl thionocarbamate(IPDTC) was designed and synthesized for copper-sulfur flotation separation. Density functional theory calculations were performed to investigate the electronic structures of IPDTC. The results showed that IPDTC had higher energy of the highest occupied molecular orbital but lower electronegativity than O-isopropyl-N-ethyl thionocarbamate(Z-200). It was predicted that IPDTC had strong collection ability according to the reaction energy criteria. Flotation results demonstrated that the collecting ability of IPDTC to chalcopyrite and pyrite was stronger than that of Z-200. Then, the flotation mechanism was analyzed by measurements of surface tension, adsorption capacity, XPS, FTIR and zeta potential. These results indicated that IPDTC could reduce the solution surface tension. The adsorption capacity of IPDTC on chalcopyrite was higher than that on pyrite, consistent with the results of the flotation tests. FTIR, zeta potential and XPS results also demonstrated that IPDTC was strongly absorbed on the chalcopyrite surface by formation of Cu—S—C bonds, but showed a weak affinity on the pyrite surface.
基金supported by the National Natural Science Foundation of China(21503046,21373206,21203182)the National Basic Research Program of China(2013CB834603)+3 种基金the Natural Science Foundation of Guizhou Province of China(QKJ(2015)2122)Natural Science foundation of Department of Education of Guizhou Province(QJTD(2015)55 and ZDXK(2014)18)the GZEU startup packagethe Open Fund of Shaanxi Key Laboratory of Catalysis to JXL(SXKLC-2017-01)~~
文摘An FeOx‐based Pt single‐atom catalyst(SAC),Pt1/FeOx,has stimulated significant recent interest owing to its extraordinary activity toward CO oxidation.The concept of SAC has also been successfully extended to other FeOx supported transition metal systems both experimentally and theoretically.However,the FeOx substrate itself(denoted by Fe1/FeOx following the same nomenclature of Pt1/FeOx)as a typical transition metal oxide possesses a very low catalytic activity toward CO oxidation,although it can be viewed as Fe1/FeOx SAC.Here,to understand the catalytic mechanism of FeOx‐based SACs for CO oxidation,we have performed density functional theory calculations on Pt1/FeOx and Fe1/FeOx for CO oxidation to address the differences between these two SACs in terms of the catalytic mechanism of CO oxidation and the chemical behavior of the catalysts.Our calculation results indicated that the catalytic cycle of Fe1/FeOx is much more difficult to accomplish than that of SAC Pt1/FeOx because of a high activation barrier(1.09eV)for regeneration of the oxygen vacancy formed when the second CO2molecule desorbs from the surface.Moreover,density of states and Bader charge analysis revealed differences in the catalytic performance for CO oxidation by the SACs Fe1/FeOx and Pt1/FeOx.This work provides insights into the fundamental interactions between the single‐atom Pt1and FeOx substrate,and the exceptional catalytic performance of this system for CO oxidation.
基金supported by National Natural Science Foundation of China under Grant Nos.10174024 and 10474025
文摘We study squeezed properties of magnon squeezed thermal spin states by using the distribution of Q function in the ferromagnet. It is found that the distribution of Q function strongly depends on the temperature T and coupling parameter γ. Below the transition temperature Tc, the distribution Q function in the squeezed thermal spin state presents a richer structure than in the normal state. Non-classical effects have been observed. In the transition from the normal to the squeezed thermal spin state, the phase symmetry of the magnon system is spontaneously broken.
基金Supported by National Natural Science Foundation of China under Grant No. 10674092Shanghai Leading Academic Disciplines Project under Grant No. S30105
文摘The quantum electronic transport through a precessing magnetic spin coupled to noncollinearly polarized ferromagnetic leads (F-MS-F) has been studied in this paper. The nonequilibrium Green function approach is used to calculate local density of states (LDOS) and current in the presence of external bias. The characters of LDOS and the electronic current are obtained. The tunneling current is investigated for different precessing angle and different configurations of the magnetization of the leads. The investigation revea/s that when the precessing angle takes θ 〈 π /2 and negative bias is applied, the resonant tunneling current appears, otherwise, it appears when positive bias is applied. When the leads are totally polarized and the precessing angel takes O, the tunneling current changes with the configuration of two leads; and it becomes zero when the two leads are antiparallel.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10574048 and 20490210
文摘The multisublattice Green's function technique is applied to study the magnetic properties of a mixed spin-2 and spin-5/2 Heisenberg ferrimagnetic system on a two-dimensional honeycomb lattice. The role of the different interactions in the Hamiltonian is explored. When only the nearest-neighbor interaction and the single-ion anisotropy are included, our results indicate that there are compensation points at finite temperatures. When the next-nearest-neighbor interaction exceeds a minimum value that depends on the other parameters in the Hamiltonian, the compensation point disappears. The next-nearest-neighbor interaction has the effect of changing the compensation temperature.
基金Project(U1234208)supported by the Major Program of the National Natural Science Foundation of ChinaProject(2013J008-A)supported by the Research and Development Plan of Major Tasks in Science and Technology China Railways Co.Ltd.,China
文摘Wheel/rail relationship is a fundamental problem of railway system. Wear of wheel profiles has great effect on vehicle performance. Thus, it is important not just for the analysis of wear characteristics but for its prediction. Actual wheel profiles of the high-speed trains on service were measured in the high-speed line and the wear characteristics were analyzed which came to the following results. The wear location was centralized from-15 mm to 25 mm. The maximum wear value appeared at the area of 5 mm from tread center far from wheel flange and it was less than 1.5 mm. Then, wheel wear was fitted to get the polynomial functions on different locations and operation mileages. A binary numerical prediction model was raised to predict wheel wear. The prediction model was proved by vehicle system dynamics and wheel/rail contact geometry. The results show that the prediction model can reflect wear characteristics of measured profiles and vehicle performances.
基金supported by the National Natural Science Foundation of China under Grant No.10325418
文摘The phase transition of Heisenberg fluid has been investigated with the density functional theory in mean-field approximation (MF). The matrix of the second derivatives of the grand canonical potential Ω with respect to the particle density fluctuations and the magnetization fluctuations has been investigated and diagonalized. The smallest eigenvalue being 0 signalizes the phase instability and the related eigenvector characterizes this phase transition. We find a Curie line where the order parameter is pure magnetization and a spinodal where the order parameter is a mixture of particle density and magnetization. Along the spinodal, the character of phase instability changes continuously from predominant condensation to predominant ferromagnetic phase transition with the decrease of total density. The spinodal meets the Curie line at the critical endpoint with the reduced density p*=pσ3=0.224 and the reduced temperature T* =kT/ε=1.87 (σ is the diameter of Heisenberg hard sphere and e is the coupling constant).
基金Supported by the National Natural Science Foundation of China under Grant No.10974048the Excellent Middle Age and Youth People Science and Technology Creative Team Foundation of the Educational Department of the Hubei Province under Grant No.T200805
文摘The electronic structure and the magnetic properties of the molecule-based ferromagnets Cu[C(CN)3]2 and Mn[C(CN)3]2 are studied according to first principles within density-functional theory (DFT) and the full potential linearized augmented plane wave (FP-LAPW) method. The total energy, atomic spin magnetic moments, and density of states (DOS) of Cu[C(CN)3]2 and Mn[C(CN)3]2 are all calculated. The calculations reveal that the compounds have a stable ferromagnetic ground state and half-metallic properties. The total spin magnetic moment is 1.0μB for Cu[C(CN)3]2 and 5.0#B for Mn[C(CN)3]e per molecule, the magnetic moment mainly comes from metal atoms, although there is a slight contribution from N and C atoms.
基金This work was supported by the National Key Research & Development Program of China (No.2016YFA0200604), the National Natural Science Foundation of China (No.21273210), the Ministry of Science and Technology of China (No.2017YFA0204904), the Fundamen- tal Research Funds for the Central Universities (No.WK2340000074). We used computational re- sources of Super-computing Center of University of Science and Technology of China.
文摘We perform first-principles simulations on a type of two-dimensional metal-organic nanosheet derived from the recently reported manganese bis-dithiolene Mn3C12S12 [Nanoscale 5, 10404 (2013)] and manganese bis-diamine Mn3C12N12H12 [ChemPhysChem 16, 614 (2015)] mono-layers. By coordinating chalcogen (S or O) atoms and -NH- group to Mn atoms with trans- or cis-structures and preserving space inversion symmetry, four configurations of this type of nanosheet are obtained: trans-manganese dithiolene-diamine Mn3(C6S3N3H3)2, cis- manganese dithiolene-diamine Mn3(C6S6)(C6N6H6), trans-manganese dihydroxyl-diamine Mn3(C6O3N3H3)2, and cis-manganese dihydroxyl-diamine Mn3(C6O6)(C6N6H6). The ge- ometric con guration, electronic structure and magnetic properties of these metal-organic nanosheets are systematically explored by density functional theory calculations. The cal- culated results show that Mn3(C6S3N3H3)2, Mn3(C6O3N3H3)2 and Mn3(C6O6)(C6N6H6) monolayers exhibit half-metallicity and display strong ferromagnetism with Curie transition temperatures near and even beyond room temperature, and Mn3(C6S6)(C6N6H6) monolayer is a semiconductor with small energy gap and spin frustration ground state. The mechanisms for the above properties, especially in uences of diflerent groups (atoms) substitution and coordination style on the magnetism of the nanosheet, are also discussed. The predicted two-dimensional metal-organic nanosheets have great promise for the future spintronics ap-plications.
文摘Based on the critical unstable of both crystal and magnetic structure of Gd-intermetallic compound near the competition of two strongly independent subsystem ("local 4f7" and "conduction electron concentration"), a new QPT (quantum point transition) is predicted by calculation of: (1) The band structure and density of state by density functional theory where a strong narrowing fluidity of fermions around EF with shifted to negative value "-0.8 eV "is observable in the Gd-intermetalliccompound system while in the Y-case, it is not dominated. An antiferromagnetic state on the fluidity of conduction band can be investigated; (2) The internal magnetic field due to short range exchange interaction Jij between the nearest neighbor of local magnetic moment of stable s-state of Gd (L = 0) through the mean field approximation and of Eigenvalue-Eigenfunction ~.(k) are calculated. While a strong negative value of Jy is predicted, the eigenvalue L(k) of the system shows a strong antiferromagnetic phase in the reciprocal lattice direction 〈010〉, 〈001〉 in the correlation length 3.38 ~A. Although the antiferromagnetic state at Rc 〈_ 3.38 °A is a puzzle but it is completely dominated at Rc = 9 °A after passing through the competition between ).λmin(O) and λmin(π) in the ranger of 3.2 °A 〈 Rc 〈 9 °A. Since both of the antiferromagnetic subsystems are sensitive to the predicted KF, the effect of decreasing of conduction electron is proposed to investigate, the change of the antiferromagnetic ordering state to the competition of ferromagnetic state (in direction 〈010〉) and antiferromagnetic state (in direction 〈001 〉 and 〈 100〉) resulted to paramagnetic state in the long range Rc = 9 °A.
基金Supported by the Natural Science Foundation of Guangdong Province under Grant No.8151009001000055
文摘In this paper, we apply the two-time Green's function method, and provide a simple way to study themagnetic properties of one-dimensional spin-(S, s) Heisenberg ferromagnets.The magnetic susceptibility and correlationfunctions are obtained by using the Tyablikov decoupling approximation.Our results show that the magnetic susceptibilityand correlation length are a monotonically decreasing function of temperature regardless of the mixed spins.It isfound that in the case of S = s, our results of one-dimensional mixed-spin model is reduced to be those of the isotropicferromagnetic Heisenberg chain in the whole temperature region.Our results for the susceptibility are in agreement withthose obtained by other theoretical approaches.
基金Supported by the Scientific Research Fund of Southwest Petroleum University
文摘Using an equation-of-motion technique, we theoretically study the Kondo-Fano effect in the T-shaped double quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian. We calculate the density of states in this system by solving Green function. Our results reveal that the density of states show some noticeable characteristics not only depending upon the interdot coupling tab, the energy level eal of the side coupled quantum dot QDb, and the relative angle θ of magnetic moment M, but also the asymmetry parameter a in ferromagnetic leads and so on. All these parameters greatly influence the density of states of the eentral quantum dot QDa. This system is a possible candidate for spin valve transistors and may have potential applications in the spintronies.