A series of both unsupported and coal‐supported iron–oxygen compounds with gradual changes in microstructure were synthesized by a precipitation‐oxidation process at 20 to 70°C.The relationship between the mic...A series of both unsupported and coal‐supported iron–oxygen compounds with gradual changes in microstructure were synthesized by a precipitation‐oxidation process at 20 to 70°C.The relationship between the microstructures and catalytic activities of these precursors during direct coal liquefaction was studied.The results show that the microstructure could be controlled through adjusting the synthesis temperature during the precipitation‐oxidation procedure,and that compounds synthesized at lower temperatures exhibit higher catalytic activity.As a result of their higher proportions ofγ‐FeOOH orα‐FeOOH crystalline phases,the unsupported iron–oxygen compounds synthesized at 20–30°C,which also had high specific surface areas and moisture levels,generate oil yields 4.5%–4.6%higher than those obtained with precursors synthesized at 70°C.It was also determined that higher oil yields were obtained when the catalytically‐active phase formed by the precursors during liquefaction(pyrrhotite,Fe1-xS)had smaller crystallites.Feed coal added as a carrier was found to efficiently disperse the active precursors,which in turn significantly improved the catalytic activity during coal liquefaction.展开更多
Contrast degradation experiments between ethanol and polyvinyl alcohol (PVA) were conducted during H2O2, UV/H2O2, Fenton, and Photo-Fenton processes in this study. UV/VIS spectra showed' that complexes between Fe(...Contrast degradation experiments between ethanol and polyvinyl alcohol (PVA) were conducted during H2O2, UV/H2O2, Fenton, and Photo-Fenton processes in this study. UV/VIS spectra showed' that complexes between Fe(Ⅲ) and organics were easily formed and degraded within reaction time. Compared with ,the degradation of complex, hydroxyl radicals acted weakly in Fenton or Photo-Fenton process. Hydroxyl radi'cals involved in Photo-Fenton process were deemed to be generated from the split decomposition of H2O2, photolysis of Fe_aq^3+, and degradation of hydrated Fe(Ⅳ)-complex but not traditional Fenton reaction. Experimental evidence to support this point was presented in this paper.展开更多
Iron-based perovskite-type compounds modified by Ru were prepared through sol-gel process to study its catalytic activity of NOx direct decomposition at low temperature and evaluate the conversion of NO under the expe...Iron-based perovskite-type compounds modified by Ru were prepared through sol-gel process to study its catalytic activity of NOx direct decomposition at low temperature and evaluate the conversion of NO under the experimental conditions. The catalytic activity of La 0.9Ce 0.1Fe 0.8-nCo 0.2RunO3 (n=0.01,0.03,0.05,0.07,0.09)series for the NO, NO-CO two components, CO-HC-NO three components were also analyzed. The catalytic investigation evidenced that the presence of Ru is necessary for making highly activity in decomposition of nitric oxide even at low temperature(400 ℃)and La 0.9Ce 0.9Fe 0.75Co 0.2Ru 0.05O3 (n=0.05) has better activity in all the samples, the conversion of it is 58.5%. With the reducing gas(CO,C3H6)added into the gas, the catalyst displayed very high activity in decomposition of NO and the conversion of it is 80% and 92.5% separately.展开更多
文摘A series of both unsupported and coal‐supported iron–oxygen compounds with gradual changes in microstructure were synthesized by a precipitation‐oxidation process at 20 to 70°C.The relationship between the microstructures and catalytic activities of these precursors during direct coal liquefaction was studied.The results show that the microstructure could be controlled through adjusting the synthesis temperature during the precipitation‐oxidation procedure,and that compounds synthesized at lower temperatures exhibit higher catalytic activity.As a result of their higher proportions ofγ‐FeOOH orα‐FeOOH crystalline phases,the unsupported iron–oxygen compounds synthesized at 20–30°C,which also had high specific surface areas and moisture levels,generate oil yields 4.5%–4.6%higher than those obtained with precursors synthesized at 70°C.It was also determined that higher oil yields were obtained when the catalytically‐active phase formed by the precursors during liquefaction(pyrrhotite,Fe1-xS)had smaller crystallites.Feed coal added as a carrier was found to efficiently disperse the active precursors,which in turn significantly improved the catalytic activity during coal liquefaction.
基金National Natural Science Foundation of China(No.20176053)
文摘Contrast degradation experiments between ethanol and polyvinyl alcohol (PVA) were conducted during H2O2, UV/H2O2, Fenton, and Photo-Fenton processes in this study. UV/VIS spectra showed' that complexes between Fe(Ⅲ) and organics were easily formed and degraded within reaction time. Compared with ,the degradation of complex, hydroxyl radicals acted weakly in Fenton or Photo-Fenton process. Hydroxyl radi'cals involved in Photo-Fenton process were deemed to be generated from the split decomposition of H2O2, photolysis of Fe_aq^3+, and degradation of hydrated Fe(Ⅳ)-complex but not traditional Fenton reaction. Experimental evidence to support this point was presented in this paper.
基金Sponsored by the National Natural Science Foundation of China(Grant No.20271019 and 20576027), Natural Science Foundation of Heilongjiang Prov-ince(Grant No.B200504), Postdoctoral Foundationof Heilongjiang Province(Grant No.LBH-Z05066) and Education Department Foundation of Hei-longjiang Province(Grant No.11511270).
文摘Iron-based perovskite-type compounds modified by Ru were prepared through sol-gel process to study its catalytic activity of NOx direct decomposition at low temperature and evaluate the conversion of NO under the experimental conditions. The catalytic activity of La 0.9Ce 0.1Fe 0.8-nCo 0.2RunO3 (n=0.01,0.03,0.05,0.07,0.09)series for the NO, NO-CO two components, CO-HC-NO three components were also analyzed. The catalytic investigation evidenced that the presence of Ru is necessary for making highly activity in decomposition of nitric oxide even at low temperature(400 ℃)and La 0.9Ce 0.9Fe 0.75Co 0.2Ru 0.05O3 (n=0.05) has better activity in all the samples, the conversion of it is 58.5%. With the reducing gas(CO,C3H6)added into the gas, the catalyst displayed very high activity in decomposition of NO and the conversion of it is 80% and 92.5% separately.