The collecting performances of N-dodecylethylene-diamine (ND) to quartz and hematite were studied via single mineral flotation. Experimental results show that ND has stronger collecting ability to quartz than hemati...The collecting performances of N-dodecylethylene-diamine (ND) to quartz and hematite were studied via single mineral flotation. Experimental results show that ND has stronger collecting ability to quartz than hematite. Different floatability of quartz and hematite was presented in the existence of depressant. Compared with lauryl amine, ND has stronger collecting performances to quartz. Satisfied separation result of artificially mixed sample was acquired with iron grade of concentrate of 59.92% and iron recovery of 88.85% when pulp pH value was 7.27 with 41.7 mg/L collector and 3.33 mg/L starch. Polar group properties calculation results indicated that ND has stronger collecting capability and better selectivity than lauryl amine. Measurement results of zeta-potentials and infrared spectrum showed that hydrogen bonding adsorption and electrostatic adsorption occur between the surface of ND and quartz.展开更多
Iron is a critical micronutrient, and iron derived from heme contributes a large proportion of the total iron absorbed in a typical Western diet. Heme iron is absorbed by different mechanisms than non-heme iron, but d...Iron is a critical micronutrient, and iron derived from heme contributes a large proportion of the total iron absorbed in a typical Western diet. Heme iron is absorbed by different mechanisms than non-heme iron, but despite considerable study over many years these mechanisms remain poorly understood. This review provides an overview of the importance of heme iron in the diet and discusses the two prevailing hypotheses of heme absorption; namely receptor mediated endocytosis of heme, and direct transport into the intestinal enterocyte by recently discovered heme transporters. A specific emphasis is placed on the questions surrounding the site of heme catabolism and the identity of the enzyme that performs this task. Additionally, we present the hypothesis that a non-heme iron transport protein may be required for heme iron absorption and discuss the experiences of our laboratory in examining this hypothesis.展开更多
基金Projects (2008BAB32B14, 2008BAB31B03) supported by the National Key Technology R&D Program of China Project (51004027) supported by the National Natural Science Foundation of China
文摘The collecting performances of N-dodecylethylene-diamine (ND) to quartz and hematite were studied via single mineral flotation. Experimental results show that ND has stronger collecting ability to quartz than hematite. Different floatability of quartz and hematite was presented in the existence of depressant. Compared with lauryl amine, ND has stronger collecting performances to quartz. Satisfied separation result of artificially mixed sample was acquired with iron grade of concentrate of 59.92% and iron recovery of 88.85% when pulp pH value was 7.27 with 41.7 mg/L collector and 3.33 mg/L starch. Polar group properties calculation results indicated that ND has stronger collecting capability and better selectivity than lauryl amine. Measurement results of zeta-potentials and infrared spectrum showed that hydrogen bonding adsorption and electrostatic adsorption occur between the surface of ND and quartz.
文摘Iron is a critical micronutrient, and iron derived from heme contributes a large proportion of the total iron absorbed in a typical Western diet. Heme iron is absorbed by different mechanisms than non-heme iron, but despite considerable study over many years these mechanisms remain poorly understood. This review provides an overview of the importance of heme iron in the diet and discusses the two prevailing hypotheses of heme absorption; namely receptor mediated endocytosis of heme, and direct transport into the intestinal enterocyte by recently discovered heme transporters. A specific emphasis is placed on the questions surrounding the site of heme catabolism and the identity of the enzyme that performs this task. Additionally, we present the hypothesis that a non-heme iron transport protein may be required for heme iron absorption and discuss the experiences of our laboratory in examining this hypothesis.