采用Fe(Ⅱ)EDTA络合-铁屑还原脱硝工艺,针对功率175 k W的柴油机,搭建了处理量为640 m^3·h^(-1)的脱硫脱硝中试装置,系统研究了脱硝装置连续脱除柴油机尾气中NO的过程。结果表明:铁屑还原效果较好,连续运行时,Fe(Ⅱ)EDTA溶液对NO...采用Fe(Ⅱ)EDTA络合-铁屑还原脱硝工艺,针对功率175 k W的柴油机,搭建了处理量为640 m^3·h^(-1)的脱硫脱硝中试装置,系统研究了脱硝装置连续脱除柴油机尾气中NO的过程。结果表明:铁屑还原效果较好,连续运行时,Fe(Ⅱ)EDTA溶液对NO有很好的吸收效果;喷淋量、填料层高度及再生温度均会影响络合剂吸收NO的脱除效率,但功率的改变对络合剂吸收NO的脱除效率影响较小。长时间连续运行实验表明,系统的脱硝性能稳定,稳定运行时的脱硝效率连续7 d均保持在75%左右;系统运行过程中,络合液的pH逐渐上升,最终稳定在7.45左右。展开更多
Reduction of nitrate by zero-valent iron is a highly exergonic reaction that has long been known to occur. Use of scrap iron filings (SIF) as the PRB (Permeable Reactive Barrier) material can be used to recycle certai...Reduction of nitrate by zero-valent iron is a highly exergonic reaction that has long been known to occur. Use of scrap iron filings (SIF) as the PRB (Permeable Reactive Barrier) material can be used to recycle certain by-products, and identify cheaper replacements for expensive conventional PRB materials, especially pure metallic iron. The feasibility of reductive denitrification of nitrate by SIF was studied by batch experiments. Operational parameters such as pH value, SIF dosage and initial concentration of nitrate were investigated. The removal efficiency of nitrate reached 80% under the conditions of pH of 2.5, nitrate initial con- centration of 45 mg/L and SIF dosage of 100 g/L within 4 h. Results indicated that nitrate removal is inversely related to pH. Low pH value condition favors for the nitrate transformation. Different from the results of others who studied nitrate reduction using iron powder, we found that there was a lag time before nitrate reduction occurs, even at low pH. Finally, the possible mechanism of nitrate reduction by Fe0 is discussed.展开更多
文摘采用Fe(Ⅱ)EDTA络合-铁屑还原脱硝工艺,针对功率175 k W的柴油机,搭建了处理量为640 m^3·h^(-1)的脱硫脱硝中试装置,系统研究了脱硝装置连续脱除柴油机尾气中NO的过程。结果表明:铁屑还原效果较好,连续运行时,Fe(Ⅱ)EDTA溶液对NO有很好的吸收效果;喷淋量、填料层高度及再生温度均会影响络合剂吸收NO的脱除效率,但功率的改变对络合剂吸收NO的脱除效率影响较小。长时间连续运行实验表明,系统的脱硝性能稳定,稳定运行时的脱硝效率连续7 d均保持在75%左右;系统运行过程中,络合液的pH逐渐上升,最终稳定在7.45左右。
基金Project (No. 20407015) supported by the National Natural Sci-ence Foundation of China
文摘Reduction of nitrate by zero-valent iron is a highly exergonic reaction that has long been known to occur. Use of scrap iron filings (SIF) as the PRB (Permeable Reactive Barrier) material can be used to recycle certain by-products, and identify cheaper replacements for expensive conventional PRB materials, especially pure metallic iron. The feasibility of reductive denitrification of nitrate by SIF was studied by batch experiments. Operational parameters such as pH value, SIF dosage and initial concentration of nitrate were investigated. The removal efficiency of nitrate reached 80% under the conditions of pH of 2.5, nitrate initial con- centration of 45 mg/L and SIF dosage of 100 g/L within 4 h. Results indicated that nitrate removal is inversely related to pH. Low pH value condition favors for the nitrate transformation. Different from the results of others who studied nitrate reduction using iron powder, we found that there was a lag time before nitrate reduction occurs, even at low pH. Finally, the possible mechanism of nitrate reduction by Fe0 is discussed.