Sulfur speciation transformation during bioleaching of pyrite-containing sphalerite concentrate by thermophile Sulfolobus metallicus (S. metallicus) at 65 ℃ was investigated by X-ray diffraction (XRD), diffuse re...Sulfur speciation transformation during bioleaching of pyrite-containing sphalerite concentrate by thermophile Sulfolobus metallicus (S. metallicus) at 65 ℃ was investigated by X-ray diffraction (XRD), diffuse reflectance Fourier transform infrared spectroscopy (FT-IR) and sulfur K-edge X-ray absorption near edge structure spectroscopy (XANES). The results show that the presence of S. metallicus effectively enhances the dissolution of the mineral. The yield of zinc increases from 0.5 g/L in sterile control to 2.7 g/L in bioleaching. The pyrite in the concentrate facilitates zinc dissolution in the early stage, but has hindrance role in the late stage for the formation of jarosite. Sulfur speciation analyses show that jarosite and elemental sulfur are main products in bioleaching process, and the accumulation ofjarosite is mainly responsible for the decline of leaching efficiency.展开更多
A thermostatic incubation experiment was carried out to estimate the effects of flooding periods, stalk application and P addition on Fe transformation and P availability in calcareous soils. Submergence increased amo...A thermostatic incubation experiment was carried out to estimate the effects of flooding periods, stalk application and P addition on Fe transformation and P availability in calcareous soils. Submergence increased amorphous Fe, especially in the case of stalk application. The newly formed amorphous Fe with a great surface area played an important role in P sorption; and submergence also stimulated the dissolution of inorganic P, thus increasing the availability of soil P in calcareous soils. Meanwhile, a part of soluble P was adsorbed and fixed again on the surface of newly formed amorphous Fe, thus resulting in a decrease of P availability. Soil rapidly available P increased after ISO-day incubation. There existed significantly negative correlations between soil amorphous Fe content and soil Fe-P and rapidly available P contents. Submerged conditions promoted the transformation of inorganic P added to-ward Fe-P in calcareous soils, especially in the case of stalk application.展开更多
基金Project(50974140) supported by the National Natural Science Foundation of ChinaProject(VR-09157) supported by Beijing Synchrotron Radiation Facility (BSRF) Public User Program,China
文摘Sulfur speciation transformation during bioleaching of pyrite-containing sphalerite concentrate by thermophile Sulfolobus metallicus (S. metallicus) at 65 ℃ was investigated by X-ray diffraction (XRD), diffuse reflectance Fourier transform infrared spectroscopy (FT-IR) and sulfur K-edge X-ray absorption near edge structure spectroscopy (XANES). The results show that the presence of S. metallicus effectively enhances the dissolution of the mineral. The yield of zinc increases from 0.5 g/L in sterile control to 2.7 g/L in bioleaching. The pyrite in the concentrate facilitates zinc dissolution in the early stage, but has hindrance role in the late stage for the formation of jarosite. Sulfur speciation analyses show that jarosite and elemental sulfur are main products in bioleaching process, and the accumulation ofjarosite is mainly responsible for the decline of leaching efficiency.
基金A part of the project supported by the Laboratory of Material Cycling in Pedosphere, Academia Sinica.
文摘A thermostatic incubation experiment was carried out to estimate the effects of flooding periods, stalk application and P addition on Fe transformation and P availability in calcareous soils. Submergence increased amorphous Fe, especially in the case of stalk application. The newly formed amorphous Fe with a great surface area played an important role in P sorption; and submergence also stimulated the dissolution of inorganic P, thus increasing the availability of soil P in calcareous soils. Meanwhile, a part of soluble P was adsorbed and fixed again on the surface of newly formed amorphous Fe, thus resulting in a decrease of P availability. Soil rapidly available P increased after ISO-day incubation. There existed significantly negative correlations between soil amorphous Fe content and soil Fe-P and rapidly available P contents. Submerged conditions promoted the transformation of inorganic P added to-ward Fe-P in calcareous soils, especially in the case of stalk application.