Electrochemical measurements were carried out to elucidate decomposition mechanism of pentlandite using modified powder microelectrode with Acidithiobacillus ferrooxidans attached or without on the mineral powder surf...Electrochemical measurements were carried out to elucidate decomposition mechanism of pentlandite using modified powder microelectrode with Acidithiobacillus ferrooxidans attached or without on the mineral powder surface.Cyclic voltammetry(CV) results show that at a low potential of about-0.2 V(vs SCE),the pentlandite was transformed to an intermediated phase like Fe4.5-yNi4.5-xS8-z when Fe and Ni ions were evacuated from mineral lattice;when the potential was changed from-0.2 V to 0.2 V,the unstable violarite(Fe3Ni3S4) and FeNi2S4 were formed which was accompanied by element sulfur formed on the mineral surface;when the potential increased over 0.2 V,the unstable intermediated phase decomposed entirely;at a higher potential of 0.7 V,the evacuated ferrous ion was oxidized to ferric ion.The presence of Acidithiobacillus ferrooxidans made the oxidation peak current increase with initial peak potential negatively moving,and the bacteria also contributed to the sulfur removing from mineral surface,which was demonstrated by the reduction characteristic at potential ranging from-0.75 to-0.5 V.Leaching experiments and electrochemical results show that the solution acidity increasing when pH2 may impede the oxidation process slightly.展开更多
Submicro α-Fe2O3 coatings were formed using electrophoretic deposition(EPD) technique in aqueous media. The zeta potentials of different α-Fe2O3 suspensions with different additives were measured as a function of p ...Submicro α-Fe2O3 coatings were formed using electrophoretic deposition(EPD) technique in aqueous media. The zeta potentials of different α-Fe2O3 suspensions with different additives were measured as a function of p H to identify the optimum suspension condition for deposition. Electrophoretic depositions of α-Fe2O3 coatings under different applied electric fields and deposition time were studied and the effects of applied voltages and deposition time on deposition rates and thicknesses were investigated. The particle packing densities of the deposits at various applied voltages and deposition time were also analyzed by a scanning electron microscope(SEM). The results show that crack-free α-Fe2O3 coatings with uniform microstructure and good adherence to the nickel substrates are successfully obtained. Electrophoretic deposited α-Fe2O3 coating from aqueous suspension is a feasible, low-cost and environmental friendly method.展开更多
基金Project(20876014) supported by the National Natural Science Foundation of China
文摘Electrochemical measurements were carried out to elucidate decomposition mechanism of pentlandite using modified powder microelectrode with Acidithiobacillus ferrooxidans attached or without on the mineral powder surface.Cyclic voltammetry(CV) results show that at a low potential of about-0.2 V(vs SCE),the pentlandite was transformed to an intermediated phase like Fe4.5-yNi4.5-xS8-z when Fe and Ni ions were evacuated from mineral lattice;when the potential was changed from-0.2 V to 0.2 V,the unstable violarite(Fe3Ni3S4) and FeNi2S4 were formed which was accompanied by element sulfur formed on the mineral surface;when the potential increased over 0.2 V,the unstable intermediated phase decomposed entirely;at a higher potential of 0.7 V,the evacuated ferrous ion was oxidized to ferric ion.The presence of Acidithiobacillus ferrooxidans made the oxidation peak current increase with initial peak potential negatively moving,and the bacteria also contributed to the sulfur removing from mineral surface,which was demonstrated by the reduction characteristic at potential ranging from-0.75 to-0.5 V.Leaching experiments and electrochemical results show that the solution acidity increasing when pH2 may impede the oxidation process slightly.
基金Project(51021063)supported by the National Natural Science Foundation for Innovation Group of ChinaProject(2012M521540)supported by China Postdoctoral Science Foundation+1 种基金Project(2013RS4027)supported by the Post Doctoral Scientific Foundation of Hunan Province,ChinaProject(CSUZC2013023)supported by the Precious Apparatus Open Share Foundation of Central South University,China
文摘Submicro α-Fe2O3 coatings were formed using electrophoretic deposition(EPD) technique in aqueous media. The zeta potentials of different α-Fe2O3 suspensions with different additives were measured as a function of p H to identify the optimum suspension condition for deposition. Electrophoretic depositions of α-Fe2O3 coatings under different applied electric fields and deposition time were studied and the effects of applied voltages and deposition time on deposition rates and thicknesses were investigated. The particle packing densities of the deposits at various applied voltages and deposition time were also analyzed by a scanning electron microscope(SEM). The results show that crack-free α-Fe2O3 coatings with uniform microstructure and good adherence to the nickel substrates are successfully obtained. Electrophoretic deposited α-Fe2O3 coating from aqueous suspension is a feasible, low-cost and environmental friendly method.