为实现内置式永磁同步电机宽转速范围内的损耗最小控制,建立了永磁同步电机损耗模型,考虑电机动态工况,推导了损耗最小的直轴电流隐式表达式,采用数值方法求解该直轴电流;基于扩展卡尔曼观测器,估算铁损支路电流,实时计算等效铁损电阻...为实现内置式永磁同步电机宽转速范围内的损耗最小控制,建立了永磁同步电机损耗模型,考虑电机动态工况,推导了损耗最小的直轴电流隐式表达式,采用数值方法求解该直轴电流;基于扩展卡尔曼观测器,估算铁损支路电流,实时计算等效铁损电阻修正损耗模型.结合矢量控制,与额定转速以下采用最大转矩电流比(Maximum Torque per Ampere,MTPA)、额定转速以上采用弱磁控制(Flux Weakening,FW)或最大转矩电压比(Maximum Torque per Voltage,MTPV)的传统控制策略进行比较研究.结果表明:在全转速范围内,所提策略均能使可控总损耗最小,动态和稳态效率均优于传统策略,且在额定转速动态响应更快,磁阻转矩利用更好.所提损耗最小控制策略实现了宽转速范围内的统一求解,具有计算过程快速简洁、动稳态工况均可适用和更高效节能的优点.展开更多
文摘为实现内置式永磁同步电机宽转速范围内的损耗最小控制,建立了永磁同步电机损耗模型,考虑电机动态工况,推导了损耗最小的直轴电流隐式表达式,采用数值方法求解该直轴电流;基于扩展卡尔曼观测器,估算铁损支路电流,实时计算等效铁损电阻修正损耗模型.结合矢量控制,与额定转速以下采用最大转矩电流比(Maximum Torque per Ampere,MTPA)、额定转速以上采用弱磁控制(Flux Weakening,FW)或最大转矩电压比(Maximum Torque per Voltage,MTPV)的传统控制策略进行比较研究.结果表明:在全转速范围内,所提策略均能使可控总损耗最小,动态和稳态效率均优于传统策略,且在额定转速动态响应更快,磁阻转矩利用更好.所提损耗最小控制策略实现了宽转速范围内的统一求解,具有计算过程快速简洁、动稳态工况均可适用和更高效节能的优点.