Developing efficient water oxidation catalysts(WOCs)with earth‐abundant elements still remains a challenging task for artificial photosynthesis.Iron‐based WOC is a promising candidate because it is economically chea...Developing efficient water oxidation catalysts(WOCs)with earth‐abundant elements still remains a challenging task for artificial photosynthesis.Iron‐based WOC is a promising candidate because it is economically cheap,little toxic and environmentally friendly.In this study,we found that the catalytic water oxidation activity on amorphous iron‐based oxide/hydroxide(FeOx)can be decreased by an order of magnitude after the dehydration process at room temperature.Thermogravimetric analysis,XRD and Raman results indicated that the dehydration process of FeOx at room temperature causes the almost completely loss of water molecule with no bulk structural changes.Based on this finding,we prepared hydrated ultrasmall(ca.2.2 nm)FeOx nanoparticles of amorphous feature,which turns out to be extremely active as WOC with turnover frequency(TOF)up to 9.3 s^-1 in the photocatalytic Ru(bpy)3^2+‐Na2S2O8 system.Our findings suggest that future design of active iron‐based oxides as WOCs requires the consideration of their hydration status.展开更多
The relationship between iron oxides and surface charge characteristics in variable charge soils ( latosol and red earth ) was studied in following three ways. ( 1 ) Remove free iron oxides ( Fed ) and amorphous iron ...The relationship between iron oxides and surface charge characteristics in variable charge soils ( latosol and red earth ) was studied in following three ways. ( 1 ) Remove free iron oxides ( Fed ) and amorphous iron oxides ( Feo ) from the soils with sodium dithionite and acid ammonium oxalate solution respectively. ( 2 ) Add 2% glucose ( on the basis of air-dry soil weight ) to soils and incubate under submerged condition to activate iron oxides, and then the mixtures are dehydrated and air-dried to age iron oxides. ( 3 ) Precipitate various crystalline forms of iron oxides onto kaolinite. The results showed that free iron oxides ( Fed ) were the chief carrier of variable positive charges. Of which crystalline iron oxides ( Fed-Feo ) presented mainly as discrete particles in the soils and could only play a role of the carrier of positive charges, and did little influence on negative charges. Whereas the amorphous iron oxides ( Feo ) , which presented mainly as a coating with a large specific surface area, not only had positive charges, but also blocked the negative charge sites in soils. Submerged incubation activated iron oxides in the soils, and increased the amount of amorphous iron oxides and the degree of activation of iron oxide, which resulted in the increase of positive and negative charges of soils. Dehydration and air-dry aged iron oxides in soils and decreased the amount of amorphous iron oxides and the degree of activation of iron oxide, and also led to the decrease of positive and negative charges. Both the submerged incubation and the dehydration and air-dry had no significant influence on net charges. Precipitation of iron oxides onto kaolinite markedly increased positive charges and decreased negative charges. Amorphous iron oxide having a larger surface area contributed more positive charge sites and blocked more negative charge sites in kaolinite than crystalline goethite.展开更多
Pyoverdine is one of the siderphores excreted by Pseudomonas aeruginosa that can help microbe to uptake iron in vitro. To determine the effect of pyoverdine chelating with iron, we purified the free pyoverdine and app...Pyoverdine is one of the siderphores excreted by Pseudomonas aeruginosa that can help microbe to uptake iron in vitro. To determine the effect of pyoverdine chelating with iron, we purified the free pyoverdine and applied the dynamic laser light scattering (DLS) to detect the interaction between the pyoverdine and ferric hydroxide. The real-time DLS data analysis indicated that pyoverdine can directly combine with Fe(OH)3 to form complexes and these substances are gradually degraded by themselves then completely disappeared. In our experiment, we have demonstrated that pyoverdine may not only chelate ferric ion but also availably dissolve ferric hydroxide which assists bacteria to survive in iron-deficient environments.展开更多
In the present paper, we continue our investigation on the antiferromagneticorigin of the charge order observed in the halt-doped manganese. By introducing aSu-Schrieffer-Heeger (SSH) type of perturbation interaction ...In the present paper, we continue our investigation on the antiferromagneticorigin of the charge order observed in the halt-doped manganese. By introducing aSu-Schrieffer-Heeger (SSH) type of perturbation interaction to the double-exchange Hamiltonian, wecalculate again its ground-state phase diagram at Glling x = 0.5 by the unrestricted real-spaceHartree-Fock approximation method. We find that, as the SSH electron-phonon interaction increases,the charge order parameter decreases to zero rapidly but the CE-type antiferromagnetic order becomesmore stable. In other words, the charge order is much more fragile than the CE-type or theNeel-type antiferromagnetic orders under the electron-phonon perturbation. These results support theproposed theory in the recent publications that the charge order in these systems is induced by theantiferromagnetic correlations.展开更多
Studies have been made, by 15N-tracer technique on nitrogen loss resulting from adding amorphous manganese oxide to NH4+-N medium under anaerobic conditions. The fact that the total nitrogen recovery was decreased and...Studies have been made, by 15N-tracer technique on nitrogen loss resulting from adding amorphous manganese oxide to NH4+-N medium under anaerobic conditions. The fact that the total nitrogen recovery was decreased and that 15NO2, 15N2O, 15N14NO, 15NO, 15N2and 15N14N were emitted has proved that, like amorphous iron oxide, amorphous manganese oxide can also act as an electron acceptor in the oxidation of NH4+-N under anaerobic conditions and give rise to nitrogen loss. This once again illustrates another mechanism by which the loss of ammonium nitrogen in paddy soils is brought about by amorphous iron and manganese oxides. The quantity of nitrogen loss by amorphous manganese oxide increased with an increase in the amount of amorphous manganese oxide added and lessened with time of its aging. The nitrogen loss resulting from amorphous manganese oxide was less than that from amorphous iron oxide. And the nitrogen loss by cooperation of amorphous manganese oxide and microorganisms (soil suspension ) was larger than that by amorphous manganese oxide alone. In the system, nitrogen loss was associated with the specific surface area and oxidation-reduction of amorphous manganese oxide. However, their quantitative relationship and the exact reaction processes of nitrogen loss induced by amorphous manganese oxide remain to be further studied.展开更多
Nanostructured zinc-copper mixed ferrite was synthesized using sol-gel method. Different compositions of ferrite, Zn_((1-x))Cu_xFe_2O_4(x=0.0, 0.25, 0.50, 0.75), characterized by XRD, reveal single phase inverse spine...Nanostructured zinc-copper mixed ferrite was synthesized using sol-gel method. Different compositions of ferrite, Zn_((1-x))Cu_xFe_2O_4(x=0.0, 0.25, 0.50, 0.75), characterized by XRD, reveal single phase inverse spinel in all the samples. With increasing copper content, the crystallite size increases. The surface morphology of all the samples, studied by SEM, shows porous structure of particles. The prepared samples were also analyzed by FT-IR and TEM. Catalytic activity of the samples was studied on lanthanum oxalate decomposition by thermogravimety.The rate constant k has the highest value with x=0.75 and 5%(mole fraction) of the catalyst and is attributed to high copper content, the mixed sites Cu^(2+)-Fe^+ and/or Cu^+-Fe^(2+) ion pairs besides the one component sites Cu^(2+)-Cu^+, Fe^(3+)-Fe^(2+), as a result of mutual charge interaction. In other words, the increasing activity of mixed oxides is attributed to increase in the content of active sites via creation of new ion pairs. With increasing Zn content, particle size increases. Variation of catalytic activity of ferrite powders is due to the changes of the valence state of catalytically active components of the ferrites, which oxidizes the carbon monoxide released from lanthanum oxalate.展开更多
Iron oxidation is a prevalent and important biogeochemical process in paddy soil,but little is known about whether and how microbially mediated iron oxidation is coupled with carbon assimilation,particularly under mic...Iron oxidation is a prevalent and important biogeochemical process in paddy soil,but little is known about whether and how microbially mediated iron oxidation is coupled with carbon assimilation,particularly under microaerobic conditions.Here,we investigated kinetics of CO_2 assimilation and Fe(Ⅱ)oxidation in an incubation experiment with paddy soil under suboxic conditions,and profiled the associated microbial community using DNA-stable isotope probing and 16S r RNA gene-based sequencing.The results showed that CO_2 assimilation and Fe(II)oxidation in the gradient tubes were predominantly mediated by the microbes enriched in the paddy soil,primarily Azospirillum and Magnetospirillum,as their relative abundances were higher in the^( 13)C heavy fractions compared to^( 12)C heavy fractions.This study provided direct evidence of chemoautotrophic microaerophiles linking iron oxidation and carbon assimilation at the oxic–anoxic interface in the paddy soil ecosystem.展开更多
In China, most Precambrian banded iron formations (BIFs) are situated in the North China Craton. The Yuanjiacun iron depos- it, located in the Ltlliang area, is arguably the most representative Superior-type BIF. Th...In China, most Precambrian banded iron formations (BIFs) are situated in the North China Craton. The Yuanjiacun iron depos- it, located in the Ltlliang area, is arguably the most representative Superior-type BIF. This iron deposit is coherent with the sedimentary rock succession of the Yuanjiacun Formation in the lower Lliliang Group, and was interpreted to be deposited at 2.3-2.1 Ga, based on ages of overlying and underlying volcanic strata. This age overlaps with the time range of the Great Oxidation Event (GOE, 2.4-2.2 Ga). The Yuanjiacun BIF consists mainly of subhedral-xenomorphic magnetite and quartz and rarely other minerals with a lower degree of metamorphism, from greenschist to lower amphibolite facies. The geochemical characteristics of this BIF are similar to those of Superior-type BIFs. Prominent positive La, Y, and Eu anomalies normalized by the Post Archean Australian Shale (PAAS) indicate that the primary chemical precipitate is a result of solutions that repre- sent mixtures of seawater and high-T hydrothermal fluids. The contamination from crustal detritus found is negligible based on low abundances of Al2O3 and TiO2 (〈0.5%) and of trace elements such as Th, Hf, Zr, and Sc (〈1.5 ppm), as well as the lack of co-variations between Al2O3 and TiO2. In particular, the Yuanjiacun BIF samples do not display significant negative Ce anom- alies like those of the Archean iron formations, but rather, the Yuanjiacun BIF samples exhibit prominent positive Ce anoma- lies, low Y/Ho ratios, and high light to heavy REE ((Pr/Yb)sN) ratios, which are essentially consistent with the late Paleoprote- rozoic (〈2.0 Ga) BIFs around the world. These characteristics of the Yuanjiacun BIF samples imply that the ancient ocean (2.3-2.1 Ga) was redox-stratified from oxic shallow water to deeper anoxic water. The specific redox conditions of the ancient ocean may be related to the GOE, which gave rise to the oxidation of Ce and Mn in the upper water, and to the presence of a Mn oxide shuttle in the ocean, resulting in varying REE patterns due to the precipitation and dissolution of this Mn oxide shut tle under different redox states. Therefore, the Yuanjiacun BIF appears to have formed near the redoxcline and lower-level reduced marine water.展开更多
基金supported by the Basic Research Program of China(973 Program,2014CB239403)National Natural Science Foundation of China(21522306,21633009)Key Research Program of Frontier Sciences,CAS(QYZDY-SSW-JSC023)
文摘Developing efficient water oxidation catalysts(WOCs)with earth‐abundant elements still remains a challenging task for artificial photosynthesis.Iron‐based WOC is a promising candidate because it is economically cheap,little toxic and environmentally friendly.In this study,we found that the catalytic water oxidation activity on amorphous iron‐based oxide/hydroxide(FeOx)can be decreased by an order of magnitude after the dehydration process at room temperature.Thermogravimetric analysis,XRD and Raman results indicated that the dehydration process of FeOx at room temperature causes the almost completely loss of water molecule with no bulk structural changes.Based on this finding,we prepared hydrated ultrasmall(ca.2.2 nm)FeOx nanoparticles of amorphous feature,which turns out to be extremely active as WOC with turnover frequency(TOF)up to 9.3 s^-1 in the photocatalytic Ru(bpy)3^2+‐Na2S2O8 system.Our findings suggest that future design of active iron‐based oxides as WOCs requires the consideration of their hydration status.
文摘The relationship between iron oxides and surface charge characteristics in variable charge soils ( latosol and red earth ) was studied in following three ways. ( 1 ) Remove free iron oxides ( Fed ) and amorphous iron oxides ( Feo ) from the soils with sodium dithionite and acid ammonium oxalate solution respectively. ( 2 ) Add 2% glucose ( on the basis of air-dry soil weight ) to soils and incubate under submerged condition to activate iron oxides, and then the mixtures are dehydrated and air-dried to age iron oxides. ( 3 ) Precipitate various crystalline forms of iron oxides onto kaolinite. The results showed that free iron oxides ( Fed ) were the chief carrier of variable positive charges. Of which crystalline iron oxides ( Fed-Feo ) presented mainly as discrete particles in the soils and could only play a role of the carrier of positive charges, and did little influence on negative charges. Whereas the amorphous iron oxides ( Feo ) , which presented mainly as a coating with a large specific surface area, not only had positive charges, but also blocked the negative charge sites in soils. Submerged incubation activated iron oxides in the soils, and increased the amount of amorphous iron oxides and the degree of activation of iron oxide, which resulted in the increase of positive and negative charges of soils. Dehydration and air-dry aged iron oxides in soils and decreased the amount of amorphous iron oxides and the degree of activation of iron oxide, and also led to the decrease of positive and negative charges. Both the submerged incubation and the dehydration and air-dry had no significant influence on net charges. Precipitation of iron oxides onto kaolinite markedly increased positive charges and decreased negative charges. Amorphous iron oxide having a larger surface area contributed more positive charge sites and blocked more negative charge sites in kaolinite than crystalline goethite.
基金We thank professor Fan Jin of University of Science and Technology of China provided idea and designed the experiments. This work was supported by the National Program on Key Basic Research Project (No.2012CB933802) and the National Natural Science Foundation of China (No.21274141, No.21104071).
文摘Pyoverdine is one of the siderphores excreted by Pseudomonas aeruginosa that can help microbe to uptake iron in vitro. To determine the effect of pyoverdine chelating with iron, we purified the free pyoverdine and applied the dynamic laser light scattering (DLS) to detect the interaction between the pyoverdine and ferric hydroxide. The real-time DLS data analysis indicated that pyoverdine can directly combine with Fe(OH)3 to form complexes and these substances are gradually degraded by themselves then completely disappeared. In our experiment, we have demonstrated that pyoverdine may not only chelate ferric ion but also availably dissolve ferric hydroxide which assists bacteria to survive in iron-deficient environments.
文摘In the present paper, we continue our investigation on the antiferromagneticorigin of the charge order observed in the halt-doped manganese. By introducing aSu-Schrieffer-Heeger (SSH) type of perturbation interaction to the double-exchange Hamiltonian, wecalculate again its ground-state phase diagram at Glling x = 0.5 by the unrestricted real-spaceHartree-Fock approximation method. We find that, as the SSH electron-phonon interaction increases,the charge order parameter decreases to zero rapidly but the CE-type antiferromagnetic order becomesmore stable. In other words, the charge order is much more fragile than the CE-type or theNeel-type antiferromagnetic orders under the electron-phonon perturbation. These results support theproposed theory in the recent publications that the charge order in these systems is induced by theantiferromagnetic correlations.
文摘Studies have been made, by 15N-tracer technique on nitrogen loss resulting from adding amorphous manganese oxide to NH4+-N medium under anaerobic conditions. The fact that the total nitrogen recovery was decreased and that 15NO2, 15N2O, 15N14NO, 15NO, 15N2and 15N14N were emitted has proved that, like amorphous iron oxide, amorphous manganese oxide can also act as an electron acceptor in the oxidation of NH4+-N under anaerobic conditions and give rise to nitrogen loss. This once again illustrates another mechanism by which the loss of ammonium nitrogen in paddy soils is brought about by amorphous iron and manganese oxides. The quantity of nitrogen loss by amorphous manganese oxide increased with an increase in the amount of amorphous manganese oxide added and lessened with time of its aging. The nitrogen loss resulting from amorphous manganese oxide was less than that from amorphous iron oxide. And the nitrogen loss by cooperation of amorphous manganese oxide and microorganisms (soil suspension ) was larger than that by amorphous manganese oxide alone. In the system, nitrogen loss was associated with the specific surface area and oxidation-reduction of amorphous manganese oxide. However, their quantitative relationship and the exact reaction processes of nitrogen loss induced by amorphous manganese oxide remain to be further studied.
文摘Nanostructured zinc-copper mixed ferrite was synthesized using sol-gel method. Different compositions of ferrite, Zn_((1-x))Cu_xFe_2O_4(x=0.0, 0.25, 0.50, 0.75), characterized by XRD, reveal single phase inverse spinel in all the samples. With increasing copper content, the crystallite size increases. The surface morphology of all the samples, studied by SEM, shows porous structure of particles. The prepared samples were also analyzed by FT-IR and TEM. Catalytic activity of the samples was studied on lanthanum oxalate decomposition by thermogravimety.The rate constant k has the highest value with x=0.75 and 5%(mole fraction) of the catalyst and is attributed to high copper content, the mixed sites Cu^(2+)-Fe^+ and/or Cu^+-Fe^(2+) ion pairs besides the one component sites Cu^(2+)-Cu^+, Fe^(3+)-Fe^(2+), as a result of mutual charge interaction. In other words, the increasing activity of mixed oxides is attributed to increase in the content of active sites via creation of new ion pairs. With increasing Zn content, particle size increases. Variation of catalytic activity of ferrite powders is due to the changes of the valence state of catalytically active components of the ferrites, which oxidizes the carbon monoxide released from lanthanum oxalate.
基金funded by the National Natural Science Foundations of China(41420104007,41330857,and 41701295)Guangdong Natural Science Funds for Distinguished Young Scholar(2014A030306041)and Special Support Program(2016)
文摘Iron oxidation is a prevalent and important biogeochemical process in paddy soil,but little is known about whether and how microbially mediated iron oxidation is coupled with carbon assimilation,particularly under microaerobic conditions.Here,we investigated kinetics of CO_2 assimilation and Fe(Ⅱ)oxidation in an incubation experiment with paddy soil under suboxic conditions,and profiled the associated microbial community using DNA-stable isotope probing and 16S r RNA gene-based sequencing.The results showed that CO_2 assimilation and Fe(II)oxidation in the gradient tubes were predominantly mediated by the microbes enriched in the paddy soil,primarily Azospirillum and Magnetospirillum,as their relative abundances were higher in the^( 13)C heavy fractions compared to^( 12)C heavy fractions.This study provided direct evidence of chemoautotrophic microaerophiles linking iron oxidation and carbon assimilation at the oxic–anoxic interface in the paddy soil ecosystem.
基金supported by the Major State Basic Research Programme of the People’s Republic of China(Grant No.2012CB416601)the Knowledge Innovation Programme of the Chinese Academy of Sciences(Grant No.KZCX2-YW-Q04-07)
文摘In China, most Precambrian banded iron formations (BIFs) are situated in the North China Craton. The Yuanjiacun iron depos- it, located in the Ltlliang area, is arguably the most representative Superior-type BIF. This iron deposit is coherent with the sedimentary rock succession of the Yuanjiacun Formation in the lower Lliliang Group, and was interpreted to be deposited at 2.3-2.1 Ga, based on ages of overlying and underlying volcanic strata. This age overlaps with the time range of the Great Oxidation Event (GOE, 2.4-2.2 Ga). The Yuanjiacun BIF consists mainly of subhedral-xenomorphic magnetite and quartz and rarely other minerals with a lower degree of metamorphism, from greenschist to lower amphibolite facies. The geochemical characteristics of this BIF are similar to those of Superior-type BIFs. Prominent positive La, Y, and Eu anomalies normalized by the Post Archean Australian Shale (PAAS) indicate that the primary chemical precipitate is a result of solutions that repre- sent mixtures of seawater and high-T hydrothermal fluids. The contamination from crustal detritus found is negligible based on low abundances of Al2O3 and TiO2 (〈0.5%) and of trace elements such as Th, Hf, Zr, and Sc (〈1.5 ppm), as well as the lack of co-variations between Al2O3 and TiO2. In particular, the Yuanjiacun BIF samples do not display significant negative Ce anom- alies like those of the Archean iron formations, but rather, the Yuanjiacun BIF samples exhibit prominent positive Ce anoma- lies, low Y/Ho ratios, and high light to heavy REE ((Pr/Yb)sN) ratios, which are essentially consistent with the late Paleoprote- rozoic (〈2.0 Ga) BIFs around the world. These characteristics of the Yuanjiacun BIF samples imply that the ancient ocean (2.3-2.1 Ga) was redox-stratified from oxic shallow water to deeper anoxic water. The specific redox conditions of the ancient ocean may be related to the GOE, which gave rise to the oxidation of Ce and Mn in the upper water, and to the presence of a Mn oxide shuttle in the ocean, resulting in varying REE patterns due to the precipitation and dissolution of this Mn oxide shut tle under different redox states. Therefore, the Yuanjiacun BIF appears to have formed near the redoxcline and lower-level reduced marine water.