A series of reduction experiments of iron ore pellets with hydrogen,carbon monoxide and their mixture were carried out in a laboratory scale shaft furnace.The sticking behavior accompanying reduction of iron ore pelle...A series of reduction experiments of iron ore pellets with hydrogen,carbon monoxide and their mixture were carried out in a laboratory scale shaft furnace.The sticking behavior accompanying reduction of iron ore pellets was investigated.And morphology of the sticking interface forming during reduction was analyzed by SEM equipped with EDS.In order to evaluate the effects of the temperature and gas composition on sticking properties,reduction of iron ore pellets were conducted at 800-1000 ℃.The results show that the sticking strength of the pellets increases with temperature,however,decreases with hydrogen content in reducing gas.For an efficient shaft furnace operation in direct reduction(DR),relative prevention of sticking such as coating of pellets was also developed to solve sticking problem.The results show that CaO is a suitable material for the coating method.展开更多
Six additives,i.e.,limestone,lime,magnesite,magnesia,dolomite and light-burned-dolomite,were added for investigating their influences on the pellet quality.For green balls,adding lime and light-burned-dolomite makes t...Six additives,i.e.,limestone,lime,magnesite,magnesia,dolomite and light-burned-dolomite,were added for investigating their influences on the pellet quality.For green balls,adding lime and light-burned-dolomite makes the wet drop strength decrease firstly,and then increase with further increase of additive dosage.Ca(OH)2 affects the bentonite properties at the beginning,but the binding property of Ca(OH)2 will be main when the dosage is higher.The other four additives decrease the drop strength for their disadvantageous physical properties.For preheated pellets,no mater what kind of additive is added,the compressive strength will be decreased because of unmineralized additives.For roasted pellets,calcium additives can form binding phase of calcium-ferrite,and suitable liquid phase will improve recrystallization of hematite,but excessive liquid will destroy the structure of pellets,so the compressive strength of pellet increases firstly and then drops.When adding magnesium additives,the strength will be decreased because of the oxidation of magnetite retarded by MgO.展开更多
Compared with natural magnetite concentrate, artificial magnetite with more lattice defects and higher activity tends to be oxidized. And the artificial magnetite pellet at the temperature of 400℃ has the oxidation d...Compared with natural magnetite concentrate, artificial magnetite with more lattice defects and higher activity tends to be oxidized. And the artificial magnetite pellet at the temperature of 400℃ has the oxidation degree approaching to natural magnetite concentrate pellet fired at 1000℃. Besides, two kinds of pellets displayed quite different roasting characteristics. When preheated at the same temperature for the same period of time, natural magnetite concentrate pellet and artificial magnetite concentrate pellet need to be roasted at the temperature of 1100℃ and 1250℃, respectively, for 25 min to reach the compressive strength of 3000 N per pellet. When roasted at the same temperature of 1200℃, natural magnetite pellet and artificial magnetite pellet need to be roasted for 15 min and 30 min, respectively, to reach the compressive strength over 3000 N per pellet. It can be seen from the test that artificial magnetite pellet has a faster oxidation, resulting in the high porosity in the produced pellet, and it requires a roasting process at higher temperature for a longer time to reach the desired compressive strength for industrial production.展开更多
Presently,ilmenite concentrates from Odisha Sands Complex at Chhatrapur,India are utilized to produce TiO2 slag by direct smelting in an electric arc furnace.However,the process involves the consumption of excess elec...Presently,ilmenite concentrates from Odisha Sands Complex at Chhatrapur,India are utilized to produce TiO2 slag by direct smelting in an electric arc furnace.However,the process involves the consumption of excess electrical energy and difficulty in handling the arc furnace due to frothing effects.A more efficient process of pre-reducing the ilmenite before smelting has been proposed in the present communication.In particular,studies have been undertaken on the reduction process of ilmenite-coke composite pellets.The difference in the reduction behaviour of raw ilmenite and ilmenite-coke composite pellets has been established and compared with that of the pre-oxidized raw pellets.The effects of various processing parameters like temperature,residence time,and reductant percentage on the metallization of composite pellets in a static bed have been investigated.Metallization of about 90%has been achieved at 1250°C for a reduction period of 360 min with a 4%coke composition.Furthermore,the reduced pellets have been characterized through chemical analysis,optical microscopy,field emission scanning electron microscopy and X-ray diffraction analysis.The reduction behaviour of composite pellets has also been found better than that of pre-oxidized pellets indicating the former to be more efficient.展开更多
基金Project(50725416)supported by the National Natural Science Foundation for Distinguished Young Scholars of China
文摘A series of reduction experiments of iron ore pellets with hydrogen,carbon monoxide and their mixture were carried out in a laboratory scale shaft furnace.The sticking behavior accompanying reduction of iron ore pellets was investigated.And morphology of the sticking interface forming during reduction was analyzed by SEM equipped with EDS.In order to evaluate the effects of the temperature and gas composition on sticking properties,reduction of iron ore pellets were conducted at 800-1000 ℃.The results show that the sticking strength of the pellets increases with temperature,however,decreases with hydrogen content in reducing gas.For an efficient shaft furnace operation in direct reduction(DR),relative prevention of sticking such as coating of pellets was also developed to solve sticking problem.The results show that CaO is a suitable material for the coating method.
基金Project(2008BAB32B06) supported by the Key Projects in the National Science and Technology Pillar Program during the 11th Five-year Plan PeriodProject(2009ybfz20) supported by the Program for Excellent Doctor’s Degree Paper in Central South University,ChinaProject(1343/74333001114) supported by the Postgraduate’s Paper Innovation Fund of Hunan Province,China
文摘Six additives,i.e.,limestone,lime,magnesite,magnesia,dolomite and light-burned-dolomite,were added for investigating their influences on the pellet quality.For green balls,adding lime and light-burned-dolomite makes the wet drop strength decrease firstly,and then increase with further increase of additive dosage.Ca(OH)2 affects the bentonite properties at the beginning,but the binding property of Ca(OH)2 will be main when the dosage is higher.The other four additives decrease the drop strength for their disadvantageous physical properties.For preheated pellets,no mater what kind of additive is added,the compressive strength will be decreased because of unmineralized additives.For roasted pellets,calcium additives can form binding phase of calcium-ferrite,and suitable liquid phase will improve recrystallization of hematite,but excessive liquid will destroy the structure of pellets,so the compressive strength of pellet increases firstly and then drops.When adding magnesium additives,the strength will be decreased because of the oxidation of magnetite retarded by MgO.
基金Project(51474161)supported by the National Natural Science Foundation of China
文摘Compared with natural magnetite concentrate, artificial magnetite with more lattice defects and higher activity tends to be oxidized. And the artificial magnetite pellet at the temperature of 400℃ has the oxidation degree approaching to natural magnetite concentrate pellet fired at 1000℃. Besides, two kinds of pellets displayed quite different roasting characteristics. When preheated at the same temperature for the same period of time, natural magnetite concentrate pellet and artificial magnetite concentrate pellet need to be roasted at the temperature of 1100℃ and 1250℃, respectively, for 25 min to reach the compressive strength of 3000 N per pellet. When roasted at the same temperature of 1200℃, natural magnetite pellet and artificial magnetite pellet need to be roasted for 15 min and 30 min, respectively, to reach the compressive strength over 3000 N per pellet. It can be seen from the test that artificial magnetite pellet has a faster oxidation, resulting in the high porosity in the produced pellet, and it requires a roasting process at higher temperature for a longer time to reach the desired compressive strength for industrial production.
基金Project(MLP-52)supported by the Council of Scientific and Industrial Research(CSIR),India。
文摘Presently,ilmenite concentrates from Odisha Sands Complex at Chhatrapur,India are utilized to produce TiO2 slag by direct smelting in an electric arc furnace.However,the process involves the consumption of excess electrical energy and difficulty in handling the arc furnace due to frothing effects.A more efficient process of pre-reducing the ilmenite before smelting has been proposed in the present communication.In particular,studies have been undertaken on the reduction process of ilmenite-coke composite pellets.The difference in the reduction behaviour of raw ilmenite and ilmenite-coke composite pellets has been established and compared with that of the pre-oxidized raw pellets.The effects of various processing parameters like temperature,residence time,and reductant percentage on the metallization of composite pellets in a static bed have been investigated.Metallization of about 90%has been achieved at 1250°C for a reduction period of 360 min with a 4%coke composition.Furthermore,the reduced pellets have been characterized through chemical analysis,optical microscopy,field emission scanning electron microscopy and X-ray diffraction analysis.The reduction behaviour of composite pellets has also been found better than that of pre-oxidized pellets indicating the former to be more efficient.