期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
SiC粉体化学镀铜前的铁盐活化工艺 被引量:1
1
作者 邹忠利 耿桂宏 +2 位作者 马金福 马宝东 杨世明 《材料保护》 CAS CSCD 北大核心 2015年第12期29-31,48,共4页
为了实现Si C粉体化学镀前的无钯活化,采用铁盐的乙醇溶液对Si C粉体进行活化,通过单因素试验研究了活化液中铁盐含量、硼氢化钠的含量、活化温度和p H值等对Si C粉体表面铜沉积量的影响。采用扫描电镜(SEM)对Si C粉体包覆前后的表观形... 为了实现Si C粉体化学镀前的无钯活化,采用铁盐的乙醇溶液对Si C粉体进行活化,通过单因素试验研究了活化液中铁盐含量、硼氢化钠的含量、活化温度和p H值等对Si C粉体表面铜沉积量的影响。采用扫描电镜(SEM)对Si C粉体包覆前后的表观形貌进行了观察,通过X射线衍射仪(XRD)获得了包覆前后Si C粉体的组成,并对活化粉体化学镀铜后镀层的结合力进行测试。结果表明:经过铁盐活化后Si C表面吸附上了铁微粒,化学镀处理后在其表面沉积了一层铜,其结合力符合要求;最佳活化工艺条件为5.0 g/L硝酸铁,3.0 g/L硼氢化钠,p H值12.5,温度20℃。 展开更多
关键词 铁盐活化 SIC粉体 化学镀铜
下载PDF
铁盐活化污泥生物炭对水中磷的吸附效能与机理
2
作者 丁建 谢敏 +3 位作者 张子怡 彭世龙 余志 万俊力 《中国给水排水》 CAS CSCD 北大核心 2024年第23期99-106,共8页
污泥热解生物炭是市政污泥资源化利用的方式之一,其在污水处理中的应用备受关注。碱性条件下,采用亚铁离子和铁离子对预处理后污泥在N_(2)氛围下热解炭化,制备出磁性污泥生物炭(MSB),探讨MSB样品吸附水中磷的效能与机理。结果表明,热解... 污泥热解生物炭是市政污泥资源化利用的方式之一,其在污水处理中的应用备受关注。碱性条件下,采用亚铁离子和铁离子对预处理后污泥在N_(2)氛围下热解炭化,制备出磁性污泥生物炭(MSB),探讨MSB样品吸附水中磷的效能与机理。结果表明,热解温度为MSB磷吸附效能的关键控制因素,250℃下制备MSB样品(MSB250)的磷吸附效果最佳,平衡吸附量为4.6 mg/g。偏酸性条件有利于MSB250的磷吸附,pH低于3会导致样品的铁泄漏,最佳吸附反应条件是pH为4、温度为25℃。MSB250的吸附等温线符合Freundlich方程,吸附热力学分析表明,磷在MSB250上的吸附过程是自发、吸热的,MSB250的表面活性官能团与磷酸根基于路易斯酸碱作用生成络合物,可推断MSB250去除磷的主要机理为静电吸引。 展开更多
关键词 污泥生物炭 热解 铁盐活化 吸附
原文传递
Iron Activation of Natural Aluminosilicates to Remove Arsenic from Groundwater 被引量:2
3
作者 Irma Lia Botto Maria Jose Gonzalez +1 位作者 Delia Gazzolli Edgardo Luis Soto 《Journal of Environmental Science and Engineering(A)》 2013年第12期744-752,共9页
Low-cost adsorbents constituted by Fe-modified-aluminosilicates (laminar and zeolite type minerals) were developed and characterized to be used in the arsenic removal from groundwater. Iron activation was carried o... Low-cost adsorbents constituted by Fe-modified-aluminosilicates (laminar and zeolite type minerals) were developed and characterized to be used in the arsenic removal from groundwater. Iron activation was carried out "in situ" by the synthesis and deposition of mesoporous ferrihydrite. Natural iron-rich aluminosilicate was used as reference. All samples were characterized by X-ray diffraction, Raman spectroscopy, BET N2-adsorption, SEM-EDS microscopy and ICP chemical analysis. Experimental results of arsenic sorption showed that iron-poor raw materials were not active, unlike iron activated samples. The iron loading in all activated samples was below 5% (expressed as Fe203), whereas the removal capacity of these samples reaches between 200-700 gg of As by g of adsorbent, after reusing between 17 cycles and 70 cycles up to adsorbent saturation. Differences can be associated to mineral structure and to the surface charge modification by iron deposition, affecting the attraction of the As-oxoanion. On the basis of low-cost raw materials, the easy chemical process for activation shows that these materials are potentially attractive for As(V) removal. Likewise, the activation of clay minerals, with natural high content of iron, seems to be a good strategy to enhance the arsenic adsorption ability and consequently the useful life of the adsorbent. 展开更多
关键词 Arsenic removal iron activation aluminosilicates.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部