Considering the different geochemical enrichment behaviors of W and Mo,Fe?Mn binary oxide(FMBO),ferric hydroxide(Fe(OH)3)and manganese dioxide(MnO2)were studied to separate W from molybdate solution,respectively.The e...Considering the different geochemical enrichment behaviors of W and Mo,Fe?Mn binary oxide(FMBO),ferric hydroxide(Fe(OH)3)and manganese dioxide(MnO2)were studied to separate W from molybdate solution,respectively.The experimental results demonstrated that Fe?Mn binary oxide(FMBO)was the most suitable adsorbent for the separation.Under a wide pH(6.9?11.3)region,more than80%W removal efficiency and less than3%Mo loss could be obtained.In addition,the Fe?Mn binary oxide adsorbent can be regenerated by treating with3mol/L NaOH,and the W adsorption efficiency was retained after five adsorption?desorption?regeneration cycles.All these indicate that the Fe?Mn binary oxides have the potential for the separation of W from molybdate solution.展开更多
The effects of surfactant on the solvent extraction in leachingsphalerite were investigated. It is found that sodium dodecylsulfonate is the effective surfactant in improving the zinc recoveryfrom sphalerite in the aq...The effects of surfactant on the solvent extraction in leachingsphalerite were investigated. It is found that sodium dodecylsulfonate is the effective surfactant in improving the zinc recoveryfrom sphalerite in the aqueous FeCl_3-HCl-tetrachloroethylene system.Through the measurements of surface tension and viscosity of thesphalerite Slurry modified with different surfactants, it isconcluded that sodium dodecyl sulfonate in the concentration rang Of0.05 to 0.2 g·L^-1 can improve the viscosity of sphalerite slurry inthe water, decrease the surface tension of Leaching solution, preventthe aggregation of ore particles, and give very high zinc extraction.展开更多
The formation ofjarosite in the presence of Acidithiobacillusferrooxidans (A. ferrooxidans) was researched to ascertain the conditions of producing minimum precipitation. The effects of salt concentration and pH on ...The formation ofjarosite in the presence of Acidithiobacillusferrooxidans (A. ferrooxidans) was researched to ascertain the conditions of producing minimum precipitation. The effects of salt concentration and pH on the characteristics ofjarosite formed in K2SO4/(NHa)2SOa-FeSO4 inorganic salt solution and 9K medium were studied by using the measurements of scanning electron microscope, X-ray diffraction, Fourierism transform infrared analysis, thermogravity/differential thermogravity analysis and particle size analysis to evaluate the product. The results indicate that the formation of jarosite begins when A. ferrooxidans reaches logarithmic growth phase in 9K medium, and a higher pH value is beneficial to the formation of jarosite. The jarosite formed in 9K medium has smaller and more concentrative particle size and smoother surface than that formed in inorganic salt solution.展开更多
In order to improve the yield and stability of ferrate in solution, dissolved Fe(Ⅵ) prepared with NaOH and KOH respectively was compared in this study. The results showed that KOH is more suitable than NaOH for the p...In order to improve the yield and stability of ferrate in solution, dissolved Fe(Ⅵ) prepared with NaOH and KOH respectively was compared in this study. The results showed that KOH is more suitable than NaOH for the preparation of dissolved Fe(Ⅵ) at temperature over 50 ℃. It is found that the dissolved Fe(Ⅵ) prepared with KOH increases quickly at first, and then slowly with the increasing concentrations of OH-and ClO-, while it increases rapidly at first and then decreases rapidly with the increasing dosage of Fe(NO3)3·9H2O. These results are different from that prepared with NaOH. It can be explained that solid K2FeO4 salts can be formed in KOH solution, and it will lower the Fe(Ⅵ) concentration, counteract the decomposition of Fe(Ⅵ), and improve the yield of Fe(Ⅵ). The maximum ferrate concentration is 0.163 mol/L obtained by 100 g/L Fe(NO3)3·9H2O and 6.16 mol/L KOH at 65 ℃. The stability of Fe(VI) is greatly improved due to the hypochlorite existed in the dissolved ferrate, and only 24% Fe(Ⅵ) has been decomposed after 16 d for 1 mmol/L Fe(Ⅵ) at 25 ℃.展开更多
基金Projects(51334008,51304243,51604160)supported by the National Natural Science Foundation of ChinaProject(2016zzts037)supported by the Fundamental Research Funds for the Central Universities,China
文摘Considering the different geochemical enrichment behaviors of W and Mo,Fe?Mn binary oxide(FMBO),ferric hydroxide(Fe(OH)3)and manganese dioxide(MnO2)were studied to separate W from molybdate solution,respectively.The experimental results demonstrated that Fe?Mn binary oxide(FMBO)was the most suitable adsorbent for the separation.Under a wide pH(6.9?11.3)region,more than80%W removal efficiency and less than3%Mo loss could be obtained.In addition,the Fe?Mn binary oxide adsorbent can be regenerated by treating with3mol/L NaOH,and the W adsorption efficiency was retained after five adsorption?desorption?regeneration cycles.All these indicate that the Fe?Mn binary oxides have the potential for the separation of W from molybdate solution.
基金Supported by the National Natural Science Foundation of China (No. 29836130).
文摘The effects of surfactant on the solvent extraction in leachingsphalerite were investigated. It is found that sodium dodecylsulfonate is the effective surfactant in improving the zinc recoveryfrom sphalerite in the aqueous FeCl_3-HCl-tetrachloroethylene system.Through the measurements of surface tension and viscosity of thesphalerite Slurry modified with different surfactants, it isconcluded that sodium dodecyl sulfonate in the concentration rang Of0.05 to 0.2 g·L^-1 can improve the viscosity of sphalerite slurry inthe water, decrease the surface tension of Leaching solution, preventthe aggregation of ore particles, and give very high zinc extraction.
基金Projects(50321402 50374075) supported by the National Natural Science Foundation of Chinaproject(2004CB619204) supported by the National Key Fundamental Research and Development Program of China
文摘The formation ofjarosite in the presence of Acidithiobacillusferrooxidans (A. ferrooxidans) was researched to ascertain the conditions of producing minimum precipitation. The effects of salt concentration and pH on the characteristics ofjarosite formed in K2SO4/(NHa)2SOa-FeSO4 inorganic salt solution and 9K medium were studied by using the measurements of scanning electron microscope, X-ray diffraction, Fourierism transform infrared analysis, thermogravity/differential thermogravity analysis and particle size analysis to evaluate the product. The results indicate that the formation of jarosite begins when A. ferrooxidans reaches logarithmic growth phase in 9K medium, and a higher pH value is beneficial to the formation of jarosite. The jarosite formed in 9K medium has smaller and more concentrative particle size and smoother surface than that formed in inorganic salt solution.
文摘In order to improve the yield and stability of ferrate in solution, dissolved Fe(Ⅵ) prepared with NaOH and KOH respectively was compared in this study. The results showed that KOH is more suitable than NaOH for the preparation of dissolved Fe(Ⅵ) at temperature over 50 ℃. It is found that the dissolved Fe(Ⅵ) prepared with KOH increases quickly at first, and then slowly with the increasing concentrations of OH-and ClO-, while it increases rapidly at first and then decreases rapidly with the increasing dosage of Fe(NO3)3·9H2O. These results are different from that prepared with NaOH. It can be explained that solid K2FeO4 salts can be formed in KOH solution, and it will lower the Fe(Ⅵ) concentration, counteract the decomposition of Fe(Ⅵ), and improve the yield of Fe(Ⅵ). The maximum ferrate concentration is 0.163 mol/L obtained by 100 g/L Fe(NO3)3·9H2O and 6.16 mol/L KOH at 65 ℃. The stability of Fe(VI) is greatly improved due to the hypochlorite existed in the dissolved ferrate, and only 24% Fe(Ⅵ) has been decomposed after 16 d for 1 mmol/L Fe(Ⅵ) at 25 ℃.