To improve the magneto-rheological (MR) properties of magneto-rheological fluids, self-made amorphous alloy particles, the composition of which was Fe76Cr2Mo2Sn2P10B2C2Si4, were used as the disperse phase to replace t...To improve the magneto-rheological (MR) properties of magneto-rheological fluids, self-made amorphous alloy particles, the composition of which was Fe76Cr2Mo2Sn2P10B2C2Si4, were used as the disperse phase to replace traditional carbonyl iron (CI) particles to prepare amorphous based magneto-rheological fluid (AMRF). Soft magnetic properties and densities of the amorphous particles and the CI particles were tested and compared. The results indicate the amorphous particles present a lower density but larger magnetization intensity and larger permeability at lower field levels. Properties of the AMRF with 20% particles in volume fraction were tested and compared with the CI based MR fluid (CMRF). The AMRF presents a saturation yield stress of 41 kPa at ~227 kA/m and a sedimentation ratio of 80%. The results indicate the magneto-rheological fluid based on amorphous micro-particles has better MR properties and sedimentation stability than that based on CI particles at lower field levels (0-200 kA/m).展开更多
Bi1-xYbxFeO3(0〈x〈0.2) powders have been synthesized using a sol-gel method. The X- ray diffraction data show a structural transition from the rhombohedral R3c phase to the orthorhombic Pnma phase between x=0.1 and...Bi1-xYbxFeO3(0〈x〈0.2) powders have been synthesized using a sol-gel method. The X- ray diffraction data show a structural transition from the rhombohedral R3c phase to the orthorhombic Pnma phase between x=0.1 and 0.125, which should induce a ferroelectric- paraelectric transformation. The phase transition is also proven by the Raman spectroscopy. A moderate signal on magnetization appears to illustrate the enhancement of magnetization at the transformation boundary, which is suggested to be the destruction of the spin cycloid structure at low concentration. The appearance of antiferromagnetic ordering is proposed to account for the afterward reduction of the magnetization at high concentration.展开更多
Nb doped multiferroic BiFe1-xNbxO3 (0 〈x 〈0.05) polycrystalline powders have been syn-thesized by using a sol-gel method. The effect of Nb dopant on the structural, magnetic and optical properties is investigated....Nb doped multiferroic BiFe1-xNbxO3 (0 〈x 〈0.05) polycrystalline powders have been syn-thesized by using a sol-gel method. The effect of Nb dopant on the structural, magnetic and optical properties is investigated. According to the X-ray di raction data and the result of Rietveld re nement, all the samples maintain the R3c phase, while the lattice parameters a, c, the cell volume V and the Fe-O-Fe bond angle change. The remnant magnetization enhances by appropriate Nb doping due to the decreasing of the grain size. Meanwhile, Nb dopant leads to the narrowing of the band gap of BiFe1-xNbxO3 samples.展开更多
[SiO2/FePt]5/Ag thin films were deposited by RF magnetron sputtering on the glass substrates and post annealing at 550 ℃ for 30 min in vacuum. Vibrating sample magnetometer and X-ray diffraction analyser were applied...[SiO2/FePt]5/Ag thin films were deposited by RF magnetron sputtering on the glass substrates and post annealing at 550 ℃ for 30 min in vacuum. Vibrating sample magnetometer and X-ray diffraction analyser were applied to study the magnetic properties and microstructures of the films. The results show that without Ag underlayer [SiO2/FePt]5 films deposited onto the glass are FCC disordered; with the addition of Ag underlayer [SiO]FePt]5/Ag films are changed into L10 and (111) mixed texture. The variation of the SiO2 nonmagnetic layer thickness in [SiO2/FePt]5/Ag films indicates that SiO2-doping plays an important role in improving the order parameter and the perpendicular magnetic anisotropy, and reducing the grain size and intergrain interactions. By controlling SiO2 thickness the highly perpendicular magnetic anisotropy can be obtained in the [SiO2 (0.6 nm)/FePt (3 nm)]5/Ag (50 nm) films and highly (001)-oriented films can be obtained in the [SiO2 (2 nm)/FePt (3 nm)]5/Ag (50 nm) films.展开更多
Bi(Fe1-xMnx)O3 bulk ceramics with Mn concentration x up to 0.3 were prepared by rapid sintering using sol-gel derived fine powders. Structure transformation is found to depend on the Mn doping concentration by X-ray...Bi(Fe1-xMnx)O3 bulk ceramics with Mn concentration x up to 0.3 were prepared by rapid sintering using sol-gel derived fine powders. Structure transformation is found to depend on the Mn doping concentration by X-ray diffraction and Raman spectroscopy. Bi(Fe1-xMnx)O3 maintains the rhombohedral structure of BiFeO3 with x=0.05 and 0.1, but changes to the orthorhombic structure with x=0.3. Weak ferromagnetism is observed for Bi(Fe1-xMnx)O3 with x=0.05 and 0.1, but stronger paramagnetism is observed for Bi(Fe1-xMnx)O3 with x=0.3 indicating a magnetic phase change from antiferromagnetic to paramagnetic with the structure changing from R3c to C222. Two anomalies at 30 and 140 K are observed for Bi(Fe1-xMnx)O3 with x=0.05 and 0.1. The anomaly at 30 K is concluded to be related to the freezing of cluster spin glass from dc magnetic memory and relaxation measurements.展开更多
Within the t-J model, the charge transport and spin response of the doped bilayer triangular antiferromagnetare studied by considering the bilayer interaction. Although the bilayer interaction leads to the band splitt...Within the t-J model, the charge transport and spin response of the doped bilayer triangular antiferromagnetare studied by considering the bilayer interaction. Although the bilayer interaction leads to the band splitting in theelectronic structure, the qualitative behaviors of the physical properties are the same as in the single layer case. Theconductivity spectrum shows the low-energy peak and unusual midinfrared band, the temperature-dependent resistivityis characterized by the nonlinearity metallic-like behavior in the higher temperature range and the deviation from themetallic-like behavior in the lower temperature range and the commensurate neutron scattering peak near the half-fillingis split into six incommensurate peaks in the underdoped regime, with the incommensurability increasing with the holeconcentration at lower dopings, and saturating at higher dopings.展开更多
The structure and crystal phase of the nanocrystalline powders of Ni1-xCdxFe2O4(0≤x≤0.5) mixed ferrite, synthesized by wet chemical co-precipitation method, were characterized by X-ray diffraction. Results showed ...The structure and crystal phase of the nanocrystalline powders of Ni1-xCdxFe2O4(0≤x≤0.5) mixed ferrite, synthesized by wet chemical co-precipitation method, were characterized by X-ray diffraction. Results showed that the lattice parameter increased with increasing Cd concentration. Microstructure was studied by scanning electron microscopy. TG/DTA studies were carried out on co-precipitated sulphate complexes. These studies revealed the low ferritization temperature (650 ℃) of the ferrite system synthesized by presently adopted route of synthesis and occurrence of simultaneous decomposition and ferritization processes. Further studies by infrared spectroscopy were also conducted. Moreover, magnetic properties of the prepared nanoparticles were studied by magnetization and a.c. susceptibility measurements. The response of prepared Ni1-xCdxFe2O4 mixed ferrites to magnetic field was investigated. Results show that, magnetic susceptibility, Curie temperature, and effective magnetic moment decreased as the Cd content increases.展开更多
Ab initio within the full potential linearized augmented plane wave (FP-LAPW) method with the GGA+U approach is applied to study the electronic structures of two compounds NaK3(NpO2)4(SO4)4(H2O)2 and NaNpO2SO...Ab initio within the full potential linearized augmented plane wave (FP-LAPW) method with the GGA+U approach is applied to study the electronic structures of two compounds NaK3(NpO2)4(SO4)4(H2O)2 and NaNpO2SO4H2O. The present calculations show that the major part of the spin magnetic moment in these two compounds is from Np(V) ions, and the origin of the cation-cation interactions between Np comes from the spin polarization effect within Np-ONv-Np bonds.展开更多
The Nd Fe B/Co multilayer films were prepared by magnetron sputtering. After that, the samples were annealed at 600 ℃ for 20 min. The surface morphology, phase structures and magnetic properties of Mo(50 nm)/[Nd F...The Nd Fe B/Co multilayer films were prepared by magnetron sputtering. After that, the samples were annealed at 600 ℃ for 20 min. The surface morphology, phase structures and magnetic properties of Mo(50 nm)/[Nd Fe B(100 nm)/Co(y)]×10/Mo(50 nm) thin films were researched by AFM, XRD and VSM, respectively. The results show that the films show stronger perpendicular magnetic anisotropy. When the thickness of Co layers is 10 nm, the coercivity Hc⊥ is the maximum, 295 k A/m. However, for y=10-20, the reduced remanence M/Ms of films has increased. When the thickness of Co layers is 20-30 nm, the Nd Fe B/Co multilayer films obtained more superior magnetic properties with M/Ms =0.95.展开更多
The nanoparticles of Co1+xMnxFe2-xO4 (0≤x ≤ 0.5) ferrite system are synthesized by solid-state reaction route using planetary ball milling technique to investigate structural, electrical and magnetic properties. ...The nanoparticles of Co1+xMnxFe2-xO4 (0≤x ≤ 0.5) ferrite system are synthesized by solid-state reaction route using planetary ball milling technique to investigate structural, electrical and magnetic properties. The X-ray diffraction patterns confirm the inverse spinel structure with residual oxide phases. Three distinct regions of frequency response on dielectric constant are observed Co1.2sMn0.5Fe1.75O4 as determined by the Wayne Kerr Impedance Analyzer. The first two regions of frequency response 1.13-4.5 MHz and 4.5-6.5 MHz exhibit the normal behavior but the last region 6.5-10.5 MHz indicates its anomalous behavior due to concurrent contribution of O^2-, Fe^3+, Co^2+ and Mn^3+ ions in the relaxation process for sintering effects (sintered at 700℃). This anomalous behavior is found to be pronounced and significant for the sample of composition Co1.25Mn0.25Fe1.75O4, which may be suitable to be used in the frequency band filter over wide range of frequencies. The single peak of imaginary part of dielectric constant (ε") indicates that the conduction process in this sample is due to the grain boundary resistance. The pronounced increase of capacitance (C) as observed from 100 ℃ to 125 ~C in temperature dependent measurement (30-125℃) is expected to eause from the change of polarization across the grain boundary due to redistribution of ions by the thermal agitation. The variation of resistance (R) with temperature (30-125 ℃) is found to exhibit semieonducting behavior that resulted from the p-type carriers (Co^2+/Co^3+). A significant increase of Z from 105 ℃ with the increase of temperature indicates the signature of phase transition from ferrimagnetic-to-ferromagnetic, which may be ascribed to the increase of Co content. The appearance of the single semicircular arc in the Cole-Cole plot may be attributed to the contribution of grain boundary resistance and correspond to the parallel equivalent circuit of resistor-capacitor (R-C) combination with single relaxation time. Saturation magnetization of Co1.25Mn0.25Fe1.75O4 and Co1.375Mn0.375Fe1.625O4 is found to be greater than the literature value (61.5 emu/g) of un-doped cobalt ferrite in the measurement of their initial magnetization using Lakeshore vibrating sample magnetometer. The negative real part of AC permeability of Co1.5Mn0.5Fe1.5O4 signifies the diamagnetic behavior in the frequency range 0.13-25.2 MHz and expected to cause from the formation of magnetic dipoles opposite to the applied field due to Mn^2+ in the B site. The samples are expected to be suitable for dielectric heating and high frequency applications.展开更多
This article reports first-principles band structure calculations for RMn6Sn6 (R= Tb, Dy). The calculation uses the linear muffin-tin orbitals (LMTO) method in the atomic-sphere-approximation (ASA),and yields results ...This article reports first-principles band structure calculations for RMn6Sn6 (R= Tb, Dy). The calculation uses the linear muffin-tin orbitals (LMTO) method in the atomic-sphere-approximation (ASA),and yields results showing that both TbMn6Sn6 and DyMn6Sn6 are ferrimagnetic compounds with antiparallel aligned moments of R and Mn atoms. In this research the 4f states of R atoms are treated as localized states,i. e., the hybridization of 4f states with other valence electrons is neglected. The moments of Mn in both compounds were determined to be 2.43μB and 2.38μB, respectively. The considerably small additional moments for Mn from the spin-orbit coupling indicates that the spin-orbital coupling is not dominated for Mn atoms. The total moments of Tb and Dy atoms are 10.28μB and 11.20μB. All the calculation findings accorded well with experimental results.展开更多
Three new metal organic frameworks,[Mn^(Ⅲ)_(4)Mn^(Ⅱ)_(8)O_(2)(4-thmpy)_(4)(O_(2)CPh)_(10)(OMe)_(2)(H_(2)O)_(2)]·3CH_(3)OH·4H_(2)O(1),[Mn^(Ⅱ)_(4)Co^(Ⅱ)_(6)O(4-thmpy)_(4)(O_(2)CPh)_(6)(H_(2)O)_(4)]·CH...Three new metal organic frameworks,[Mn^(Ⅲ)_(4)Mn^(Ⅱ)_(8)O_(2)(4-thmpy)_(4)(O_(2)CPh)_(10)(OMe)_(2)(H_(2)O)_(2)]·3CH_(3)OH·4H_(2)O(1),[Mn^(Ⅱ)_(4)Co^(Ⅱ)_(6)O(4-thmpy)_(4)(O_(2)CPh)_(6)(H_(2)O)_(4)]·CH_(3)OH·3H_(2)O(2),and[Mn^(Ⅱ)_(4)Ni^(Ⅱ)_(6)O(4-thmpy)_(4)(O_(2)CPh)_(6)(H_(2)O)_(4)]·2CH_(3)OH·2H_(2)O(3),have been successfully synthesized by using 4-[tri-(hydroxymethyl)methyl]pyridine(4-thmpyH_(3))as ligand.Crystal structure analyses show that compound 1 is a disk-like twelve nuclear[Mn^(Ⅲ)_(4)Mn^(Ⅱ)_(8)]0D cluster.Compounds 2 and 3 are isomorphic,and the decanuclear heteronuclear cluster[Mn^(Ⅱ)_(4)Co^(Ⅱ)_(6)]node in compound 2 can be seen as a hyper-tetrahedron of four coboundary cubic alkanes[Mn^(Ⅱ)Co^(Ⅱ)_(3)O_(4)],then each ten-nuclear heteronuclear cluster[Mn^(Ⅱ)_(4)Co^(Ⅱ)_(6)]is connected by six 4-thmpy^(3-)with six adjacent decanuclear clusters[Mn^(Ⅱ)_(4)Co^(Ⅱ)_(6)],forming the NaCl-type 3D topological structure.Magnetic studies showed that there exist antiferromagnetic interactions between metal ions in 1-3.展开更多
Cr_2Ge_2Te_6is an intrinsic ferromagnetic semiconductor with van der Waals type layered structure,thus represents a promising material for novel electronic and spintronic devices.Here we combine scanning tunneling mic...Cr_2Ge_2Te_6is an intrinsic ferromagnetic semiconductor with van der Waals type layered structure,thus represents a promising material for novel electronic and spintronic devices.Here we combine scanning tunneling microscopy and first-principles calculations to investigate the electronic structure of Cr_2Ge_2Te_6.Tunneling spectroscopy reveals a surprising large energy level shift and change of energy gap size across the ferromagnetic to paramagnetic phase transition,as well as a peculiar double-peak electronic state on the Cr-site defect.These features can be quantitatively explained by density functional theory calculations,which uncover a close relationship between the electronic structure and magnetic order.These findings shed important new lights on the microscopic electronic structure and origin of magnetic order in Cr_2Ge_2Te_6.展开更多
We have synthesized single crystals of CeZnAl3, which is a new member of family of Ce-based intermetallics CeTX3 (T=transition metal, X=Si, Ge, A1), crystallizing in the non-centrosymmetric tetragonal BaNiSns-type s...We have synthesized single crystals of CeZnAl3, which is a new member of family of Ce-based intermetallics CeTX3 (T=transition metal, X=Si, Ge, A1), crystallizing in the non-centrosymmetric tetragonal BaNiSns-type structure. Magnetization, specific heat and resistivity measurements all show that CeZnAls orders magnetically below around 4.4 K. Furthermore, magnetization measurements exhibit a hysteresis loop at low temperatures and fields, indicating the presence of a ferromagnetic component in the magnetic state. This points to a different nature of the magnetism in CeZnAl3 compared to the other isostructural CeTAl3 compounds. Resistivity measurements under pressures up to 1.8 GPa show a moderate suppression of the ordering temperature with pressure, suggesting that measurements to higher pressures are required to look for quantum critical behavior.展开更多
Using Bu4N[Fe(Tp*)(CN)3]- (Tp* = hydrotris(3,5-dimethylpyrazol-l-yl)borate) as the building block to react with Cun and N-methylimidazole, we obtained a one-dimensional (1D) beterobimetallic cyano-bridged chain, [Fe(T...Using Bu4N[Fe(Tp*)(CN)3]- (Tp* = hydrotris(3,5-dimethylpyrazol-l-yl)borate) as the building block to react with Cun and N-methylimidazole, we obtained a one-dimensional (1D) beterobimetallic cyano-bridged chain, [Fe(Tp*)(CN)3]2Cu(N- methylimidazole)2.2H20 (1). The crystal structures and magnetic studies demonstrate that complex 1 exhibits slow relaxation of the magnetization due to strong intrachain ferromagnetic coupling and weak interchain interactions.展开更多
Nanomagnetic CoPt truncated octahedral nanoparticles (TONPs) were successfully synthesised through a facile one-pot strategy. These single crystal CoPt TONPs with an average size of about 8 nm exhibit excellent elec...Nanomagnetic CoPt truncated octahedral nanoparticles (TONPs) were successfully synthesised through a facile one-pot strategy. These single crystal CoPt TONPs with an average size of about 8 nm exhibit excellent electrocatalytic performance of both activity and stability for methanol oxidation reaction (MOR). The mass and specific activities of CoPt TONPs is 8 and 6 times higher than that of standard commercial Pt/C, respectively. After accelerated durability test (ADT), the loss of electrochemical surface area (ECSA) for CoPt TONPs is only 18.5%, which is significantly less than that of commercial Pt/C (68.2%), indicating that CoPt TONPs possess much better stability than commercial Pt/C in the prolonged operation. The Curie temperature of CoPt TONPs down to 8 nm is as high as 350 K with weak ferromagntism at room temperature (RT), which is greatly valuable for recycling in the eletrocatalytic applications.展开更多
In this review article,we review the progress made in the past several years mainly regarding the efforts devoted to increasing the Curie temperature(T C) of(Ga,Mn)As,which is most widely considered as the prototype f...In this review article,we review the progress made in the past several years mainly regarding the efforts devoted to increasing the Curie temperature(T C) of(Ga,Mn)As,which is most widely considered as the prototype ferromagnetic semiconductor.Heavy Mn doping,nanostructure engineering and post-growth annealing which increase T C are described in detail.展开更多
The microstructure and magnetic properties of cobalt ferrite thin films deposited by the sputtering method on an Fe3o4 un- der-layer were investigated at different post-annealing temperatures. Results show that the Fe...The microstructure and magnetic properties of cobalt ferrite thin films deposited by the sputtering method on an Fe3o4 un- der-layer were investigated at different post-annealing temperatures. Results show that the Fe3o4 under-layer can accelerate the grain growth of cobalt ferrite films due to the phase transformation of the Fe3o4 under-layer at about 400℃-500℃. By intro- ducing the Fe3O4 under-layer, cobalt ferrite nanocrystalline thin films with high coercivity can be obtained at lower post-annealing temperatures.展开更多
基金Project (51108062) supported by the National Natural Science Foundation of ChinaProject(20100471446) supported by the China Postdoctoral Science Foundation
文摘To improve the magneto-rheological (MR) properties of magneto-rheological fluids, self-made amorphous alloy particles, the composition of which was Fe76Cr2Mo2Sn2P10B2C2Si4, were used as the disperse phase to replace traditional carbonyl iron (CI) particles to prepare amorphous based magneto-rheological fluid (AMRF). Soft magnetic properties and densities of the amorphous particles and the CI particles were tested and compared. The results indicate the amorphous particles present a lower density but larger magnetization intensity and larger permeability at lower field levels. Properties of the AMRF with 20% particles in volume fraction were tested and compared with the CI based MR fluid (CMRF). The AMRF presents a saturation yield stress of 41 kPa at ~227 kA/m and a sedimentation ratio of 80%. The results indicate the magneto-rheological fluid based on amorphous micro-particles has better MR properties and sedimentation stability than that based on CI particles at lower field levels (0-200 kA/m).
基金This work was supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project, the Ministry of Education of China (No.708070), the National Natural Science Foundation of China (No.10874046 and No.11104081), and the Fundamental Research Funds for the Central Universities (No.2012zz0078).
文摘Bi1-xYbxFeO3(0〈x〈0.2) powders have been synthesized using a sol-gel method. The X- ray diffraction data show a structural transition from the rhombohedral R3c phase to the orthorhombic Pnma phase between x=0.1 and 0.125, which should induce a ferroelectric- paraelectric transformation. The phase transition is also proven by the Raman spectroscopy. A moderate signal on magnetization appears to illustrate the enhancement of magnetization at the transformation boundary, which is suggested to be the destruction of the spin cycloid structure at low concentration. The appearance of antiferromagnetic ordering is proposed to account for the afterward reduction of the magnetization at high concentration.
文摘Nb doped multiferroic BiFe1-xNbxO3 (0 〈x 〈0.05) polycrystalline powders have been syn-thesized by using a sol-gel method. The effect of Nb dopant on the structural, magnetic and optical properties is investigated. According to the X-ray di raction data and the result of Rietveld re nement, all the samples maintain the R3c phase, while the lattice parameters a, c, the cell volume V and the Fe-O-Fe bond angle change. The remnant magnetization enhances by appropriate Nb doping due to the decreasing of the grain size. Meanwhile, Nb dopant leads to the narrowing of the band gap of BiFe1-xNbxO3 samples.
基金Project(10574085) supported by the National Natural Science Foundation of ChinaProject(207020) supported by the Science Technology Key Project of the Ministry of Education, China
文摘[SiO2/FePt]5/Ag thin films were deposited by RF magnetron sputtering on the glass substrates and post annealing at 550 ℃ for 30 min in vacuum. Vibrating sample magnetometer and X-ray diffraction analyser were applied to study the magnetic properties and microstructures of the films. The results show that without Ag underlayer [SiO2/FePt]5 films deposited onto the glass are FCC disordered; with the addition of Ag underlayer [SiO]FePt]5/Ag films are changed into L10 and (111) mixed texture. The variation of the SiO2 nonmagnetic layer thickness in [SiO2/FePt]5/Ag films indicates that SiO2-doping plays an important role in improving the order parameter and the perpendicular magnetic anisotropy, and reducing the grain size and intergrain interactions. By controlling SiO2 thickness the highly perpendicular magnetic anisotropy can be obtained in the [SiO2 (0.6 nm)/FePt (3 nm)]5/Ag (50 nm) films and highly (001)-oriented films can be obtained in the [SiO2 (2 nm)/FePt (3 nm)]5/Ag (50 nm) films.
文摘Bi(Fe1-xMnx)O3 bulk ceramics with Mn concentration x up to 0.3 were prepared by rapid sintering using sol-gel derived fine powders. Structure transformation is found to depend on the Mn doping concentration by X-ray diffraction and Raman spectroscopy. Bi(Fe1-xMnx)O3 maintains the rhombohedral structure of BiFeO3 with x=0.05 and 0.1, but changes to the orthorhombic structure with x=0.3. Weak ferromagnetism is observed for Bi(Fe1-xMnx)O3 with x=0.05 and 0.1, but stronger paramagnetism is observed for Bi(Fe1-xMnx)O3 with x=0.3 indicating a magnetic phase change from antiferromagnetic to paramagnetic with the structure changing from R3c to C222. Two anomalies at 30 and 140 K are observed for Bi(Fe1-xMnx)O3 with x=0.05 and 0.1. The anomaly at 30 K is concluded to be related to the freezing of cluster spin glass from dc magnetic memory and relaxation measurements.
文摘Within the t-J model, the charge transport and spin response of the doped bilayer triangular antiferromagnetare studied by considering the bilayer interaction. Although the bilayer interaction leads to the band splitting in theelectronic structure, the qualitative behaviors of the physical properties are the same as in the single layer case. Theconductivity spectrum shows the low-energy peak and unusual midinfrared band, the temperature-dependent resistivityis characterized by the nonlinearity metallic-like behavior in the higher temperature range and the deviation from themetallic-like behavior in the lower temperature range and the commensurate neutron scattering peak near the half-fillingis split into six incommensurate peaks in the underdoped regime, with the incommensurability increasing with the holeconcentration at lower dopings, and saturating at higher dopings.
文摘The structure and crystal phase of the nanocrystalline powders of Ni1-xCdxFe2O4(0≤x≤0.5) mixed ferrite, synthesized by wet chemical co-precipitation method, were characterized by X-ray diffraction. Results showed that the lattice parameter increased with increasing Cd concentration. Microstructure was studied by scanning electron microscopy. TG/DTA studies were carried out on co-precipitated sulphate complexes. These studies revealed the low ferritization temperature (650 ℃) of the ferrite system synthesized by presently adopted route of synthesis and occurrence of simultaneous decomposition and ferritization processes. Further studies by infrared spectroscopy were also conducted. Moreover, magnetic properties of the prepared nanoparticles were studied by magnetization and a.c. susceptibility measurements. The response of prepared Ni1-xCdxFe2O4 mixed ferrites to magnetic field was investigated. Results show that, magnetic susceptibility, Curie temperature, and effective magnetic moment decreased as the Cd content increases.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10574048 and 20490210
文摘Ab initio within the full potential linearized augmented plane wave (FP-LAPW) method with the GGA+U approach is applied to study the electronic structures of two compounds NaK3(NpO2)4(SO4)4(H2O)2 and NaNpO2SO4H2O. The present calculations show that the major part of the spin magnetic moment in these two compounds is from Np(V) ions, and the origin of the cation-cation interactions between Np comes from the spin polarization effect within Np-ONv-Np bonds.
文摘The Nd Fe B/Co multilayer films were prepared by magnetron sputtering. After that, the samples were annealed at 600 ℃ for 20 min. The surface morphology, phase structures and magnetic properties of Mo(50 nm)/[Nd Fe B(100 nm)/Co(y)]×10/Mo(50 nm) thin films were researched by AFM, XRD and VSM, respectively. The results show that the films show stronger perpendicular magnetic anisotropy. When the thickness of Co layers is 10 nm, the coercivity Hc⊥ is the maximum, 295 k A/m. However, for y=10-20, the reduced remanence M/Ms of films has increased. When the thickness of Co layers is 20-30 nm, the Nd Fe B/Co multilayer films obtained more superior magnetic properties with M/Ms =0.95.
文摘The nanoparticles of Co1+xMnxFe2-xO4 (0≤x ≤ 0.5) ferrite system are synthesized by solid-state reaction route using planetary ball milling technique to investigate structural, electrical and magnetic properties. The X-ray diffraction patterns confirm the inverse spinel structure with residual oxide phases. Three distinct regions of frequency response on dielectric constant are observed Co1.2sMn0.5Fe1.75O4 as determined by the Wayne Kerr Impedance Analyzer. The first two regions of frequency response 1.13-4.5 MHz and 4.5-6.5 MHz exhibit the normal behavior but the last region 6.5-10.5 MHz indicates its anomalous behavior due to concurrent contribution of O^2-, Fe^3+, Co^2+ and Mn^3+ ions in the relaxation process for sintering effects (sintered at 700℃). This anomalous behavior is found to be pronounced and significant for the sample of composition Co1.25Mn0.25Fe1.75O4, which may be suitable to be used in the frequency band filter over wide range of frequencies. The single peak of imaginary part of dielectric constant (ε") indicates that the conduction process in this sample is due to the grain boundary resistance. The pronounced increase of capacitance (C) as observed from 100 ℃ to 125 ~C in temperature dependent measurement (30-125℃) is expected to eause from the change of polarization across the grain boundary due to redistribution of ions by the thermal agitation. The variation of resistance (R) with temperature (30-125 ℃) is found to exhibit semieonducting behavior that resulted from the p-type carriers (Co^2+/Co^3+). A significant increase of Z from 105 ℃ with the increase of temperature indicates the signature of phase transition from ferrimagnetic-to-ferromagnetic, which may be ascribed to the increase of Co content. The appearance of the single semicircular arc in the Cole-Cole plot may be attributed to the contribution of grain boundary resistance and correspond to the parallel equivalent circuit of resistor-capacitor (R-C) combination with single relaxation time. Saturation magnetization of Co1.25Mn0.25Fe1.75O4 and Co1.375Mn0.375Fe1.625O4 is found to be greater than the literature value (61.5 emu/g) of un-doped cobalt ferrite in the measurement of their initial magnetization using Lakeshore vibrating sample magnetometer. The negative real part of AC permeability of Co1.5Mn0.5Fe1.5O4 signifies the diamagnetic behavior in the frequency range 0.13-25.2 MHz and expected to cause from the formation of magnetic dipoles opposite to the applied field due to Mn^2+ in the B site. The samples are expected to be suitable for dielectric heating and high frequency applications.
文摘This article reports first-principles band structure calculations for RMn6Sn6 (R= Tb, Dy). The calculation uses the linear muffin-tin orbitals (LMTO) method in the atomic-sphere-approximation (ASA),and yields results showing that both TbMn6Sn6 and DyMn6Sn6 are ferrimagnetic compounds with antiparallel aligned moments of R and Mn atoms. In this research the 4f states of R atoms are treated as localized states,i. e., the hybridization of 4f states with other valence electrons is neglected. The moments of Mn in both compounds were determined to be 2.43μB and 2.38μB, respectively. The considerably small additional moments for Mn from the spin-orbit coupling indicates that the spin-orbital coupling is not dominated for Mn atoms. The total moments of Tb and Dy atoms are 10.28μB and 11.20μB. All the calculation findings accorded well with experimental results.
基金the National Natural Science Foundation of China(21873018)Foundation of the Education Department of Jilin Province(111099108)Jilin Provincial Research Center of Advanced Energy Materials(Northeast Normal University)for financial support
文摘Three new metal organic frameworks,[Mn^(Ⅲ)_(4)Mn^(Ⅱ)_(8)O_(2)(4-thmpy)_(4)(O_(2)CPh)_(10)(OMe)_(2)(H_(2)O)_(2)]·3CH_(3)OH·4H_(2)O(1),[Mn^(Ⅱ)_(4)Co^(Ⅱ)_(6)O(4-thmpy)_(4)(O_(2)CPh)_(6)(H_(2)O)_(4)]·CH_(3)OH·3H_(2)O(2),and[Mn^(Ⅱ)_(4)Ni^(Ⅱ)_(6)O(4-thmpy)_(4)(O_(2)CPh)_(6)(H_(2)O)_(4)]·2CH_(3)OH·2H_(2)O(3),have been successfully synthesized by using 4-[tri-(hydroxymethyl)methyl]pyridine(4-thmpyH_(3))as ligand.Crystal structure analyses show that compound 1 is a disk-like twelve nuclear[Mn^(Ⅲ)_(4)Mn^(Ⅱ)_(8)]0D cluster.Compounds 2 and 3 are isomorphic,and the decanuclear heteronuclear cluster[Mn^(Ⅱ)_(4)Co^(Ⅱ)_(6)]node in compound 2 can be seen as a hyper-tetrahedron of four coboundary cubic alkanes[Mn^(Ⅱ)Co^(Ⅱ)_(3)O_(4)],then each ten-nuclear heteronuclear cluster[Mn^(Ⅱ)_(4)Co^(Ⅱ)_(6)]is connected by six 4-thmpy^(3-)with six adjacent decanuclear clusters[Mn^(Ⅱ)_(4)Co^(Ⅱ)_(6)],forming the NaCl-type 3D topological structure.Magnetic studies showed that there exist antiferromagnetic interactions between metal ions in 1-3.
基金supported by the Basic Science Center Project of NSFC(51788104)the MOST of China(2015CB921000)+6 种基金the support from Tsinghua University Initiative Scientific Research Program and NSFC(11774196)S.H.Z.is supported by the National Postdoctoral Program for Innovative Talents of China(BX201600091)the China Postdoctoral Science Foundation(2017M610858)the support of the National Key Research and Development Program(2016YFA0300404)NSFC Grant(11674326)the Joint Funds of NSFC and the Chinese Academy of Sciences’Large-Scale Scientific Facility(U1432139)supported in part by the Beijing Advanced Innovation Center for Future Chip(ICFC)
文摘Cr_2Ge_2Te_6is an intrinsic ferromagnetic semiconductor with van der Waals type layered structure,thus represents a promising material for novel electronic and spintronic devices.Here we combine scanning tunneling microscopy and first-principles calculations to investigate the electronic structure of Cr_2Ge_2Te_6.Tunneling spectroscopy reveals a surprising large energy level shift and change of energy gap size across the ferromagnetic to paramagnetic phase transition,as well as a peculiar double-peak electronic state on the Cr-site defect.These features can be quantitatively explained by density functional theory calculations,which uncover a close relationship between the electronic structure and magnetic order.These findings shed important new lights on the microscopic electronic structure and origin of magnetic order in Cr_2Ge_2Te_6.
基金supported by the Science Challenge Project of China(Grant No.TZ2016004)the National Natural Science Foundation of China(Grant Nos.11474251,11604291,and U1632275)the National Key R&D Program of China(Grant Nos.2017YFA0303100,and 2016YFA0300202)
文摘We have synthesized single crystals of CeZnAl3, which is a new member of family of Ce-based intermetallics CeTX3 (T=transition metal, X=Si, Ge, A1), crystallizing in the non-centrosymmetric tetragonal BaNiSns-type structure. Magnetization, specific heat and resistivity measurements all show that CeZnAls orders magnetically below around 4.4 K. Furthermore, magnetization measurements exhibit a hysteresis loop at low temperatures and fields, indicating the presence of a ferromagnetic component in the magnetic state. This points to a different nature of the magnetism in CeZnAl3 compared to the other isostructural CeTAl3 compounds. Resistivity measurements under pressures up to 1.8 GPa show a moderate suppression of the ordering temperature with pressure, suggesting that measurements to higher pressures are required to look for quantum critical behavior.
基金financial support from the National Natural Science Foundation of China (21101021, 91122031)
文摘Using Bu4N[Fe(Tp*)(CN)3]- (Tp* = hydrotris(3,5-dimethylpyrazol-l-yl)borate) as the building block to react with Cun and N-methylimidazole, we obtained a one-dimensional (1D) beterobimetallic cyano-bridged chain, [Fe(Tp*)(CN)3]2Cu(N- methylimidazole)2.2H20 (1). The crystal structures and magnetic studies demonstrate that complex 1 exhibits slow relaxation of the magnetization due to strong intrachain ferromagnetic coupling and weak interchain interactions.
基金supported by the National Basic Research Program of China(2015CB921401)the National Instrument Program of China(2012YQ120048)+2 种基金the National Natural Science Foundation of China(51625101,51431009,51471183,51331002,51371015,11274371 and 11674023)the Instrument Development Program of Chinese Academy of Sciences(YZ201345)the Fundamental Research Funds for the Central Universities(FRF-BR-15-009B)
文摘Nanomagnetic CoPt truncated octahedral nanoparticles (TONPs) were successfully synthesised through a facile one-pot strategy. These single crystal CoPt TONPs with an average size of about 8 nm exhibit excellent electrocatalytic performance of both activity and stability for methanol oxidation reaction (MOR). The mass and specific activities of CoPt TONPs is 8 and 6 times higher than that of standard commercial Pt/C, respectively. After accelerated durability test (ADT), the loss of electrochemical surface area (ECSA) for CoPt TONPs is only 18.5%, which is significantly less than that of commercial Pt/C (68.2%), indicating that CoPt TONPs possess much better stability than commercial Pt/C in the prolonged operation. The Curie temperature of CoPt TONPs down to 8 nm is as high as 350 K with weak ferromagntism at room temperature (RT), which is greatly valuable for recycling in the eletrocatalytic applications.
基金supported by the National Natural Science Foundation of China (Grant Nos.60836002,11127406 and 10920101071)
文摘In this review article,we review the progress made in the past several years mainly regarding the efforts devoted to increasing the Curie temperature(T C) of(Ga,Mn)As,which is most widely considered as the prototype ferromagnetic semiconductor.Heavy Mn doping,nanostructure engineering and post-growth annealing which increase T C are described in detail.
基金supported by the National Natural Science Foundation of China (Grant No. 61071028)the NCET (Grant No. 08-0089)the RFDP (Grant No. 20100185110024)
文摘The microstructure and magnetic properties of cobalt ferrite thin films deposited by the sputtering method on an Fe3o4 un- der-layer were investigated at different post-annealing temperatures. Results show that the Fe3o4 under-layer can accelerate the grain growth of cobalt ferrite films due to the phase transformation of the Fe3o4 under-layer at about 400℃-500℃. By intro- ducing the Fe3O4 under-layer, cobalt ferrite nanocrystalline thin films with high coercivity can be obtained at lower post-annealing temperatures.