The excavation of foundation pit generates soil deformation around existing metro tunnel with shield driving method,which may lead to the deformation of tunnel lining.It is a challenge to evaluate the deformation of s...The excavation of foundation pit generates soil deformation around existing metro tunnel with shield driving method,which may lead to the deformation of tunnel lining.It is a challenge to evaluate the deformation of shield tunnel accurately and take measures to reduce the tunnel upward displacement as much as possible for geotechnical engineers.A new simplified analytical method is proposed to predict the longitudinal deformation of existing metro tunnel due to excavation unloading of adjacent foundation pit in this paper.Firstly,the additional stress of soils under vertical axisymmetric load in layered soil is obtained by using elastic multi-layer theory.Secondly,the metro tunnel is regarded as a Timoshenko beam supported by Winkler foundation so that the shear effect of tunnels can be taken into account.The additional stress acting on the tunnel due to excavation unloading in layered soil are compared with that in homogeneous soil.Additionally,the effectiveness of the analytical solution is verified via two actual cases.Moreover,parametric analysis is conducted to investigate the responses of the metro tunnel by considering such factors as the variation of subgrade coefficient,offset distance from the excavation center to tunnel longitudinal axis as well as equivalent shear stiffness.The proposed method can be used to provide theoretical basis for similar engineering project.展开更多
Based on the strong chelating property of bathophenanthroline disulfonic acid (BPDS) with root chelate reductase activity is usually measured with a spectrophotometer using MES (2-morpholinoethanesulfonic acid) or HEP...Based on the strong chelating property of bathophenanthroline disulfonic acid (BPDS) with root chelate reductase activity is usually measured with a spectrophotometer using MES (2-morpholinoethanesulfonic acid) or HEPES (2-(4-(2-Hydroxyethyl)-1-piperazinyl) ethanesulfonic acid) buffer in the dark because of high autoreduction rate of in the presence of light. However, the exclusion of light is inconvenient, especially when analyzing a large number of samples. The objective of this study was to develop a new method for determination of root reductase activity under normal laboratory conditions using a suitable buffer composition and concentration to eliminate the autoreduction of A modified method using a Tris (2-amino-2-hydroxymethyl-1,3-propanediol) buffer at pH 7.5 instead of MES or HEPES buffer and a decreased FeEDTA (Fe ethylene diamine tetraacetic acid) concentration of 50 μmol L-1 was developed. The autoreduction of using the Tris buffer was undetectable for temperatures at 4 and 28 °C and was also much lower than that using the other buffers even with sunlight during measurement of reduction. Furthermore, the differences in reductase activity among 5 plant species and 14 red clover cultivars (Trifolium pratense L.) could be easily detected with the modified method. The method developed in this study to measure root Fe chelate reductase activity was not only effective and reliable but also easily managed under normal laboratory light conditions.展开更多
The track geometry is a critical factor that affects the running safety and riding comfort of trains moving on a high-speed railway bridge.This study addresses the mapping relationship between the track deformation an...The track geometry is a critical factor that affects the running safety and riding comfort of trains moving on a high-speed railway bridge.This study addresses the mapping relationship between the track deformation and lateral deformations of bridges.Equilibrium equations and natural boundary conditions of the track-bridge system are established based on the energy variational principle,and an analytical solution is derived for the track deformation accounting for lateral bridge deformations.A five-span simply-supported bridge with continuous welded rail has been selected as the case study.The mapping rail deformations are compared to the finite element results,and both results agree well with each other,validating the analytical method proposed in this paper.The influence factors on the mapping rail deformation are further evaluated.Results show that the mapping rail deformation is consistent with the girder displacement at the area that is away from the girder ends when the flexural stiffness ratio between the track and the bridge girder is low.The interlayer stiffness has a significant effect on the mapping rail deformation when the track flexural stiffness is of a high value.展开更多
基金Project(51568006)supported by the National Natural Science Foundation of ChinaProject(2018JJA160134)supported by the Natural Science Foundation of Guangxi Province,China。
文摘The excavation of foundation pit generates soil deformation around existing metro tunnel with shield driving method,which may lead to the deformation of tunnel lining.It is a challenge to evaluate the deformation of shield tunnel accurately and take measures to reduce the tunnel upward displacement as much as possible for geotechnical engineers.A new simplified analytical method is proposed to predict the longitudinal deformation of existing metro tunnel due to excavation unloading of adjacent foundation pit in this paper.Firstly,the additional stress of soils under vertical axisymmetric load in layered soil is obtained by using elastic multi-layer theory.Secondly,the metro tunnel is regarded as a Timoshenko beam supported by Winkler foundation so that the shear effect of tunnels can be taken into account.The additional stress acting on the tunnel due to excavation unloading in layered soil are compared with that in homogeneous soil.Additionally,the effectiveness of the analytical solution is verified via two actual cases.Moreover,parametric analysis is conducted to investigate the responses of the metro tunnel by considering such factors as the variation of subgrade coefficient,offset distance from the excavation center to tunnel longitudinal axis as well as equivalent shear stiffness.The proposed method can be used to provide theoretical basis for similar engineering project.
基金1 Project supported by the National Natural Science Foundation of China (No. 40271065) and the Science and TechnologyAgency of Japan for Postdoctoral Fellows.
文摘Based on the strong chelating property of bathophenanthroline disulfonic acid (BPDS) with root chelate reductase activity is usually measured with a spectrophotometer using MES (2-morpholinoethanesulfonic acid) or HEPES (2-(4-(2-Hydroxyethyl)-1-piperazinyl) ethanesulfonic acid) buffer in the dark because of high autoreduction rate of in the presence of light. However, the exclusion of light is inconvenient, especially when analyzing a large number of samples. The objective of this study was to develop a new method for determination of root reductase activity under normal laboratory conditions using a suitable buffer composition and concentration to eliminate the autoreduction of A modified method using a Tris (2-amino-2-hydroxymethyl-1,3-propanediol) buffer at pH 7.5 instead of MES or HEPES buffer and a decreased FeEDTA (Fe ethylene diamine tetraacetic acid) concentration of 50 μmol L-1 was developed. The autoreduction of using the Tris buffer was undetectable for temperatures at 4 and 28 °C and was also much lower than that using the other buffers even with sunlight during measurement of reduction. Furthermore, the differences in reductase activity among 5 plant species and 14 red clover cultivars (Trifolium pratense L.) could be easily detected with the modified method. The method developed in this study to measure root Fe chelate reductase activity was not only effective and reliable but also easily managed under normal laboratory light conditions.
基金Project(2021RC2011)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProjects(U1934207,52178180)supported by the National Natural Science Foundation of ChinaProject(2021M703648)supported by the China Postdoctoral Science Foundation。
文摘The track geometry is a critical factor that affects the running safety and riding comfort of trains moving on a high-speed railway bridge.This study addresses the mapping relationship between the track deformation and lateral deformations of bridges.Equilibrium equations and natural boundary conditions of the track-bridge system are established based on the energy variational principle,and an analytical solution is derived for the track deformation accounting for lateral bridge deformations.A five-span simply-supported bridge with continuous welded rail has been selected as the case study.The mapping rail deformations are compared to the finite element results,and both results agree well with each other,validating the analytical method proposed in this paper.The influence factors on the mapping rail deformation are further evaluated.Results show that the mapping rail deformation is consistent with the girder displacement at the area that is away from the girder ends when the flexural stiffness ratio between the track and the bridge girder is low.The interlayer stiffness has a significant effect on the mapping rail deformation when the track flexural stiffness is of a high value.