It is of great significance for cleaner production to substitute bio-energy for fossil fuels in iron ore sintering. However, with the replacement ratio increasing, the consistency of heat front and flame front is brok...It is of great significance for cleaner production to substitute bio-energy for fossil fuels in iron ore sintering. However, with the replacement ratio increasing, the consistency of heat front and flame front is broken, and the thermal utilizing efficiency of fuel is reduced, which results in the decrease of yield and tumble index of sinter. Circulating flue gas to sintering bed as biochar replacing 40% coke, CO in flue gas can be reused so as to increase the thermal utilizing efficiency of fuels, and the consistency of two fronts is recovered for the circulating flue gas containing certain CO2, H2 O and lower O2, which contributes to increasing the maximum temperature, extending the high temperature duration time of sintering bed, and results in improving the output and quality of sinter. In the condition of circulating 40% flue gas, the sintering with biomass fuels is strengthened, and the sintering indexes with biomass fuel replacing 40% coke breeze are comparative to those of using coke breeze completely.展开更多
Iron and steel industry is an important sector of Iran's economy.Choghart iron ore mine is an important iron ore producer of Iran steel industry.Phosphorous contained in the iron ore concentrates of Choghart mine ...Iron and steel industry is an important sector of Iran's economy.Choghart iron ore mine is an important iron ore producer of Iran steel industry.Phosphorous contained in the iron ore concentrates of Choghart mine has a detrimental effect on the steel making process,whereby this causes cracks to form in the refractory lining of blast furnaces.In the past,about 1.43 Mt of low-grade and 4.53 Mt of high-phosphorous materials had been transported to low grade and high phosphorous stockpiles,respectively,for future beneficiation.As a result of the progressive depletion of high-grade ore and establishment of beneficiation plant in Choghart,exploitation of these two stockpiles in this mine became an important issue.In this work,a linear goal programming(GP) model was developed in order to determine the optimum iron ore blend in terms of quality from low grade and high phosphorous stockpiles of Choghart mine.The model was solved by the SOLVER V.9 program.Results show that feeding with acceptable quality(w(Fe)≥50% and w(P)≤1.2%,mass fraction) materials can be blended from stockpiles that satisfy the needs of the Choghart processing line.展开更多
Transport properties of LaFeO3 in the temperature range of 2 K 〈 T 〈 300 K have been explored for the first time using interaction potential developed by the author and found that our computed results on transport p...Transport properties of LaFeO3 in the temperature range of 2 K 〈 T 〈 300 K have been explored for the first time using interaction potential developed by the author and found that our computed results on transport properties follow the same trend as that of available experimental values. These are scientifically and technologically important materials with orthorhombic perovskite-like structure and space group Pbnm. Lanthanum ferrite, LaFeO3 is semiconducting and antiferrom agnetically ordered at zero. The thermodynamics of perovskite-type or related materials of potential use in, e.g., solid oxide fuel cells have been studied to a rather limited extent only.展开更多
Proton exchange membrane fuel cells suffer from the sluggish kinetics of the oxygen reduction reaction(ORR)and the high cost of Pt catalysts.In the present work,a high‐performance ORR catalystbased on Fe,N,S‐doped p...Proton exchange membrane fuel cells suffer from the sluggish kinetics of the oxygen reduction reaction(ORR)and the high cost of Pt catalysts.In the present work,a high‐performance ORR catalystbased on Fe,N,S‐doped porous carbon(FeNS‐PC)was synthesized using melamine formaldehyderesin as C and N precursors,Fe(SCN)3as Fe and S precursors,and CaCl2as a template via a two‐stepheat treatment without a harsh template removal step.The results show that the catalyst treated at900℃(FeNS‐PC‐900)had a high surface area of775m2/g,a high mass activity of10.2A/g in anacidic medium,and excellent durability;the half‐wave potential decreased by only20mV after10000potential cycles.The FeNS‐PC‐900catalyst was used as the cathode in a proton exchangemembrane fuel cell and delivered a peak power density of0.49W/cm2.FeNS‐PC‐900therefore hasgood potential for use in practical applications.展开更多
基金Projects(51174253,51304245) supported by National Natural Science Foundation of China
文摘It is of great significance for cleaner production to substitute bio-energy for fossil fuels in iron ore sintering. However, with the replacement ratio increasing, the consistency of heat front and flame front is broken, and the thermal utilizing efficiency of fuel is reduced, which results in the decrease of yield and tumble index of sinter. Circulating flue gas to sintering bed as biochar replacing 40% coke, CO in flue gas can be reused so as to increase the thermal utilizing efficiency of fuels, and the consistency of two fronts is recovered for the circulating flue gas containing certain CO2, H2 O and lower O2, which contributes to increasing the maximum temperature, extending the high temperature duration time of sintering bed, and results in improving the output and quality of sinter. In the condition of circulating 40% flue gas, the sintering with biomass fuels is strengthened, and the sintering indexes with biomass fuel replacing 40% coke breeze are comparative to those of using coke breeze completely.
文摘Iron and steel industry is an important sector of Iran's economy.Choghart iron ore mine is an important iron ore producer of Iran steel industry.Phosphorous contained in the iron ore concentrates of Choghart mine has a detrimental effect on the steel making process,whereby this causes cracks to form in the refractory lining of blast furnaces.In the past,about 1.43 Mt of low-grade and 4.53 Mt of high-phosphorous materials had been transported to low grade and high phosphorous stockpiles,respectively,for future beneficiation.As a result of the progressive depletion of high-grade ore and establishment of beneficiation plant in Choghart,exploitation of these two stockpiles in this mine became an important issue.In this work,a linear goal programming(GP) model was developed in order to determine the optimum iron ore blend in terms of quality from low grade and high phosphorous stockpiles of Choghart mine.The model was solved by the SOLVER V.9 program.Results show that feeding with acceptable quality(w(Fe)≥50% and w(P)≤1.2%,mass fraction) materials can be blended from stockpiles that satisfy the needs of the Choghart processing line.
文摘Transport properties of LaFeO3 in the temperature range of 2 K 〈 T 〈 300 K have been explored for the first time using interaction potential developed by the author and found that our computed results on transport properties follow the same trend as that of available experimental values. These are scientifically and technologically important materials with orthorhombic perovskite-like structure and space group Pbnm. Lanthanum ferrite, LaFeO3 is semiconducting and antiferrom agnetically ordered at zero. The thermodynamics of perovskite-type or related materials of potential use in, e.g., solid oxide fuel cells have been studied to a rather limited extent only.
基金supported by the National Basic Research Program of China (973 Program,2015CB932303)the National Natural Science Founda-tion of China (21373175,21621091)~~
文摘Proton exchange membrane fuel cells suffer from the sluggish kinetics of the oxygen reduction reaction(ORR)and the high cost of Pt catalysts.In the present work,a high‐performance ORR catalystbased on Fe,N,S‐doped porous carbon(FeNS‐PC)was synthesized using melamine formaldehyderesin as C and N precursors,Fe(SCN)3as Fe and S precursors,and CaCl2as a template via a two‐stepheat treatment without a harsh template removal step.The results show that the catalyst treated at900℃(FeNS‐PC‐900)had a high surface area of775m2/g,a high mass activity of10.2A/g in anacidic medium,and excellent durability;the half‐wave potential decreased by only20mV after10000potential cycles.The FeNS‐PC‐900catalyst was used as the cathode in a proton exchangemembrane fuel cell and delivered a peak power density of0.49W/cm2.FeNS‐PC‐900therefore hasgood potential for use in practical applications.