AIM: To investigate the gastrointestinal bleeding (GIB) in people from lowland to high altitude and in workers on Mountain Tanggula and its causes as well as treatment and prophylaxis.METHODS: From 2001 to October 200...AIM: To investigate the gastrointestinal bleeding (GIB) in people from lowland to high altitude and in workers on Mountain Tanggula and its causes as well as treatment and prophylaxis.METHODS: From 2001 to October 2003, we studied GIB in 13 502 workers constructing the railroad on Mountain Tanggula which is 4905 m above the sea level. The incidence of GIB in workers at different altitudes was recorded. Endoscopy was performed when the workers evacuated to Golmud (2808 m) and Xining (2261 m). The available data on altitude GIB were analyzed.RESULTS: The overall incidence of GIB was 0.49% in 13 502 workers. The incidence increased with increasing altitude. The onset of symptoms in most patients was within three weeks after arrival at high altitude. Bleeding manifested as hematemesis, melaena or hematochezia, and might be occult. Endoscopic examination showed that the causes of altitude GIB included hemorrhage gastritis, gastric ulcer, duodenal ulcer, and gastric erosion. Experimental studies suggested that acute gastric mucosal lesion (AGML) could be induced by hypoxic and cold stress, which might be the pathogenesis of altitude GIB. Those who consumed large amount of alcohol, aspirin or dexamethasone were at a higher risk of developing GIB. Persons who previously suffered from peptic ulcer or high-altitude polycythemia were also at risk of developing GIB. Early diagnosis, evacuation, and treatment led to early recovery. CONCLUSION: GIB is a potentially life threatening disease, if it is not treated promptly and effectively. Early diagnosis, treatment and evacuation lead to an early recovery. Death due to altitude GIB can be avoided if early symptoms and signs are recognized.展开更多
In terms of rock engineering and technology in hydropower construction,the slope stability and monitoring techniques for high slopes of Three Gorges Project,the stability and support technology for high slopes of hydr...In terms of rock engineering and technology in hydropower construction,the slope stability and monitoring techniques for high slopes of Three Gorges Project,the stability and support technology for high slopes of hydropower projects in deep river valley,the stabilization techniques for underground cavern group with large span and high side walls are introduced in this paper.As for rock engineering and technology in highway and railway construction,the Qinghai-Tibet Railway — new construction techniques in permafrost,the support techniques for large squeezing deformation in Wuqiaoling Tunnel,the construction techniques for tunnels in alpine and high-altitude region,the geological prediction techniques for tunnels in karst region,the microseismic monitoring and early warning techniques for rockbursts in deep and long tunnels are presented.For rock engineering and technology inmining engineering,the innovative techniques for roadway support inmines,the simultaneous extraction technique of pillarless coal and gas in coal seams with low permeability,the safe and efficient deep openmining technology,advances in monitoring,early warning and treatment ofmine dynamic disasters are discussed.In addition,the new anchorage techniques and precision blasting technique in rock engineering are introduced.展开更多
基金Supported by the grant LS-CNNSF-30393130, and 973 Program 2006 CB 504100, CB708514, China
文摘AIM: To investigate the gastrointestinal bleeding (GIB) in people from lowland to high altitude and in workers on Mountain Tanggula and its causes as well as treatment and prophylaxis.METHODS: From 2001 to October 2003, we studied GIB in 13 502 workers constructing the railroad on Mountain Tanggula which is 4905 m above the sea level. The incidence of GIB in workers at different altitudes was recorded. Endoscopy was performed when the workers evacuated to Golmud (2808 m) and Xining (2261 m). The available data on altitude GIB were analyzed.RESULTS: The overall incidence of GIB was 0.49% in 13 502 workers. The incidence increased with increasing altitude. The onset of symptoms in most patients was within three weeks after arrival at high altitude. Bleeding manifested as hematemesis, melaena or hematochezia, and might be occult. Endoscopic examination showed that the causes of altitude GIB included hemorrhage gastritis, gastric ulcer, duodenal ulcer, and gastric erosion. Experimental studies suggested that acute gastric mucosal lesion (AGML) could be induced by hypoxic and cold stress, which might be the pathogenesis of altitude GIB. Those who consumed large amount of alcohol, aspirin or dexamethasone were at a higher risk of developing GIB. Persons who previously suffered from peptic ulcer or high-altitude polycythemia were also at risk of developing GIB. Early diagnosis, evacuation, and treatment led to early recovery. CONCLUSION: GIB is a potentially life threatening disease, if it is not treated promptly and effectively. Early diagnosis, treatment and evacuation lead to an early recovery. Death due to altitude GIB can be avoided if early symptoms and signs are recognized.
文摘In terms of rock engineering and technology in hydropower construction,the slope stability and monitoring techniques for high slopes of Three Gorges Project,the stability and support technology for high slopes of hydropower projects in deep river valley,the stabilization techniques for underground cavern group with large span and high side walls are introduced in this paper.As for rock engineering and technology in highway and railway construction,the Qinghai-Tibet Railway — new construction techniques in permafrost,the support techniques for large squeezing deformation in Wuqiaoling Tunnel,the construction techniques for tunnels in alpine and high-altitude region,the geological prediction techniques for tunnels in karst region,the microseismic monitoring and early warning techniques for rockbursts in deep and long tunnels are presented.For rock engineering and technology inmining engineering,the innovative techniques for roadway support inmines,the simultaneous extraction technique of pillarless coal and gas in coal seams with low permeability,the safe and efficient deep openmining technology,advances in monitoring,early warning and treatment ofmine dynamic disasters are discussed.In addition,the new anchorage techniques and precision blasting technique in rock engineering are introduced.