The effects of Ti-and Mg-bearing minerals on the crystal structure,morphology,particle size distribution,and formation mechanism of efficient desilication product of hydroandradite(HA)during hydrothermal conversion in...The effects of Ti-and Mg-bearing minerals on the crystal structure,morphology,particle size distribution,and formation mechanism of efficient desilication product of hydroandradite(HA)during hydrothermal conversion in a synthetic sodium aluminate solution were investigated via X-ray diffractometer,scanning electron microscope and particle size analyzer.During HA formation,anatase,rutile,and periclase dissolved in sodium aluminate solution engage in ion substitution reactions between Ti4+and Si4+,and between Mg^(2+)and Ca^(2+),respectively.However,dissolved hydromagnesite cannot enter into the HA.The content of HA after the hydrothermal reactions changes slightly with the increase of anatase and periclase contents,but it notably decreases with increased quantities of rutile and hydromagnesite.Ti-bearing minerals reduce the particle size and enhance the specific surface area of HA,whereas Mg-bearing minerals exert the opposite effect.The morphology of HA with Ti-and Mg-bearing minerals changes from spherical particles to flocculent structure and hexagonal plate-like particles.展开更多
The population of surface broken bonds of some typical sulfide, oxide and salt-type minerals which may belong to cubic, tetragonal, hexagonal, or orthorhombic system, were calculated. In terms of the calculation resul...The population of surface broken bonds of some typical sulfide, oxide and salt-type minerals which may belong to cubic, tetragonal, hexagonal, or orthorhombic system, were calculated. In terms of the calculation results, the cleavage natures of these minerals were analyzed, and the relationship between surface broken bonds density and surface energy was also established. The results show that the surface broken bonds properties could be used to predict the cleavage nature of most of minerals, and the predicted cleavage planes agree well with those reported in previous literature. Moreover, this work explored a rule that, surface broken bonds density is directly related to surface energy with determination coefficient(R2) of over 0.8, indicating that the former is a dominant factor to determine the latter. Therefore, anisotropic surface broken bonds density can be used to predict the stability of mineral surface and the reactivity of surface atoms.展开更多
Arsenopyrite was artificially added into the thiosulfate leaching solution to clarify the role of arsenopyrite on the thiosulfate leaching of gold.The effect of arsenopyrite on the thiosulfate leaching of gold was stu...Arsenopyrite was artificially added into the thiosulfate leaching solution to clarify the role of arsenopyrite on the thiosulfate leaching of gold.The effect of arsenopyrite on the thiosulfate leaching of gold was studied by the thermodynamic calculation,mineral dissolution test,leaching test and XPS analysis.The results show that the thiosulfate consumption slightly increases with increasing the concentration of arsenopyrite,but the gold dissolution is obviously hindered.This may mainly attribute to the catalytic effect of arsenopyrite on the thiosulfate decomposition and the formation of passivation layer on the gold foil surface.The passivation layer likely consists of Cu2S or Cu(S2O3)35-,element S,FeOOH and iron arsenate,which is deduced from the XPS analysis.However,the negative effect of arsenopyrite can be eliminated by adding additives.It is found that both additives of sodium carboxymethyl(CMC) and sodium phosphate(SHPP) can not only decrease the thiosulfate consumption but also improve the gold dissolution.展开更多
Gold bearing pyrite leaching was conducted in H2SO4-Fe2(SO4)3 system at different reaction temperatures,with different ferric ion concentrations,sulfuric acid concentrations and stirring speeds.The leaching kinetics...Gold bearing pyrite leaching was conducted in H2SO4-Fe2(SO4)3 system at different reaction temperatures,with different ferric ion concentrations,sulfuric acid concentrations and stirring speeds.The leaching kinetics and mechanism were studied.When the temperature ranged between 30-75 °C,the pyrite leaching was mainly controlled by chemical reaction with positive correlation to the ferric ion concentration.The activation energy obtained from Arrhenius empirical formula is 51.39 k J/mol.The EDS and XPS analyses suggest that the oxidation of sulfur within pyrite is through a series of intermediate stages,and eventually is oxidized to sulphate accompanied with the formation of element sulfur.This indicates a thiosulfate oxidation pathway of the gold bearing pyrite oxidation in H2SO4-Fe2(SO4)3 system.展开更多
The enlarged production scale of underground non-ferrous metal mines is affected by many uncertain factors difficult to describe mathematically with any level of accuracy.The problem can be solved by a synthesis of ar...The enlarged production scale of underground non-ferrous metal mines is affected by many uncertain factors difficult to describe mathematically with any level of accuracy.The problem can be solved by a synthesis of artificial intelligence.Based on the analysis of the major factors affecting the scale of enlarged production,we first interpreted in detail the design principles and structure of the intelligent system.Secondly,we introduced an ANN subsystem.In order to ensure technological and scale efficien- cies of the training samples for ANN,we filtrated the samples with a DEA method.Finally,we trained the intelligent system,which was proved to be very efficient.展开更多
Concentrations of copper (Cu) and zinc (Zn) and various magnetic parameters in contaminated urban roadside soils were investigated using chemical analysis and magnetic measurements. The results revealed highly ele...Concentrations of copper (Cu) and zinc (Zn) and various magnetic parameters in contaminated urban roadside soils were investigated using chemical analysis and magnetic measurements. The results revealed highly elevated Cu and Zn concentrations as well as magnetic susceptibility in the roadside soils. The mean concentrations of Cu and Zn in these roadside soils were almost twice those in average Chinese soils, with the mean magnetic susceptibility of the roadside soils reaching about 179 ×10^-8 m^3 kg^-1. This enhanced magnetic susceptibility was attributed to the presence of anthropogenic soft ferrimagnetic particles. A low frequency-dependent susceptibility (2.5%± 1.0%) observed in the roadside soils indicated the coarse multidomain (MD) ferrimagnetic grains to be the dominant contributor to magnetic susceptibility. The Cu and Zn concentration of the soils had highly significant linear correlations with magnetic susceptibility (P 〈 0.01), anhysteretic remanent magnetization (P 〈 0.01), and saturation isothermal remanent magnetization (P 〈 0.01). This suggested that heavy metals were associated with ferrimagnetic particles in soils, which were attributed to input of traffic emissions and industrial activities. Scanning electron microscopy and energy dispersive X-ray spectra of magnetic extracts of the roadside soils further suggested the llnk between the magnetic signal and concentrations of heavy metals. Thus, the magnetic parameters could provide a proxy measure for the level of heavy metal contamination and could be a potential tool for the detection and mapping of contaminated soils.展开更多
Metal-rich transition metal sulfides recently gained increasing attention as electrocatalysts for the hydrogen evolution reaction(HER),as they are capable to overcome major challenges faced by sulfide-rich metal catal...Metal-rich transition metal sulfides recently gained increasing attention as electrocatalysts for the hydrogen evolution reaction(HER),as they are capable to overcome major challenges faced by sulfide-rich metal catalysts such as limited conductivity and the necessity of nanostructuring.Herein,we present the synthesis,characterization and electrocatalytic investigation of ternary metal-rich sulfide composites FexCo9-xS8 as well as Ni_(y)Co_(9-y)S_(8)(x=y=0-4.5),which possess pentlandite-type structures.In this study,we show a stepwise alteration of the binary cobalt pentlandite Co9S8 and report on the replacement of cobalt with up to 4.5 equivalents of either iron or nickel.These altered pentlandite composites facilitate the proton reduction in acidic media at different temperatures.We furthermore show that the stoichiometric variation has a decisive influence on the electrochemical activation/deactivation behavior of the catalysts under reductive electrocatalytic conditions.Here,Co-deficient composites display an improved HER performance in contrast to Co_(9)S_(8).Notably,Ni/Co compounds generally tend to show higher catalytic activities towards HER than their respective Fe/Co compounds.展开更多
The binding of metallic contaminants (Pb, Cd, and Zn) and As on soil constituents was studied on four highly contaxninated alluvial soil profiles from the mining/smelting district of Pribram (Czech Republic) using...The binding of metallic contaminants (Pb, Cd, and Zn) and As on soil constituents was studied on four highly contaxninated alluvial soil profiles from the mining/smelting district of Pribram (Czech Republic) using a combination of mineralogical and chemical methods. Sequential extraction analysis (SEA) was supplemented by mineralogical investigation of both bulk samples and heavy mineral fractions using X-ray diffraction analysis (XRD) and scanning electron microscopy with an energy dispersive X-ray spectrometer (SEM/EDS). The mineralogy of Fe and Mn oxides was studied by voltammetry of microparticles (VMP) and diffuse reflectance spectrometry (DRS). Zinc and Pb were predominantly bound in the reducible fraction attributed to Fe oxides and Mn oxides (mainly birnessite, Na4Mn14O27.9H2O), which were detected in soils by XRD and SEM/EDS. In contrast, Cd was the most mobile contaminant and was predominantly present in the exchangeable fraction. Arsenic was bound to the residual and reducible fractions (corresponding to Fe oxides or to unidentified Fe-Pb arsenates). SEM/EDS observations indicate the predominant affinity of Pb for Mn oxides, and to a lesser extent, for Fe oxides. Thus, a more suitable SEA procedure should be used for these mining-affected soils to distinguish between the contaminant fraction bound to Mn oxides and Fe oxides.展开更多
The continued effect of the pyrite-tailing oxidation on the mobility of arsenic, lead, zinc, cadmium, and copper was studied in a carbonated soil under natural conditions, with the experimental plot preserved with a l...The continued effect of the pyrite-tailing oxidation on the mobility of arsenic, lead, zinc, cadmium, and copper was studied in a carbonated soil under natural conditions, with the experimental plot preserved with a layer of tailing covering the soil during three years. The experimental area is located in Southern Spain and was affected by a pyrite-mine spill. The climate in the area is typically Mediterranean, which determines the rate of soil alteration and element mobility. The intense alteration processes that occurred in the soil during three years caused important changes in its morphology and a strong degradation of the main soil properties. In this period, lead concentrated in the first 5 mm of the soil, with concentrations higher than 1500 mg kg?1, mainly associated to the neoformation of plumbojarosite. Arsenic was partially leached from the first 5 mm and mainly concentrated between 5–10 mm in the soil, with maximum values of 1239 mg kg-1; the retention of arsenates was related to the neoformation of iron hydroxysulfates (jarosite, schwertmannite) and oxyhydroxides (goethite, ferrihydrite), both with a variable degree of crystallinity. The mobility of Zn, Cd, and Cu was highly affected by pH, producing a stronger leaching in depth; their retention was related to the forms of precipitated aluminium and, in the case of Cu, also to the neoformation of hydroxysulfate.展开更多
Pelletization of hematite ore requires high fineness and very high induration temperature(~1325 ℃) owing to its poor diffusion bonding unlike magnetite ore. Further, high-alumina hematite pellets show very high red...Pelletization of hematite ore requires high fineness and very high induration temperature(~1325 ℃) owing to its poor diffusion bonding unlike magnetite ore. Further, high-alumina hematite pellets show very high reduction degradation index(RDI) during low temperature(500-650 ℃) reduction due to their volume expansion and lattice distortion. Noamundi(India) hematite ore contains very high Al2O3(2.3%) with adverse ratio of alumina to silica(~2) for which, it shows very high RDI. In this work, the acid pellets prepared from Noamundi ore fines of optimum Blaine fineness show good cold crushing strength(CCS). However, it shows very high RDI(77%). In order to reduce RDI, Mg O in form of two different gangue-containing fluxes, such as pyroxenite and olivine in varying quantities has been added. The optimum requirement and performance of these fluxes has been examined and compared. Both pyroxenite and olivine fluxed pellets show significant lowering of RDI(26% and 23%, respectively) and improvement of other properties, viz CCS, swelling indices etc with good reducibility(70%-77%). Finally, a good quality acidic hematite pellet was developed from high-alumina ore without using any lime which is very important charge material in combination of basic sinter in blast furnace.展开更多
基金financial supports from the National Key R&D Program of China (No.2022YFC2904401)the National Natural Science Foundation of China (Nos.22078055,51774079)the Fundamental Research Funds for the Central Universities,China (No.N2225002)。
文摘The effects of Ti-and Mg-bearing minerals on the crystal structure,morphology,particle size distribution,and formation mechanism of efficient desilication product of hydroandradite(HA)during hydrothermal conversion in a synthetic sodium aluminate solution were investigated via X-ray diffractometer,scanning electron microscope and particle size analyzer.During HA formation,anatase,rutile,and periclase dissolved in sodium aluminate solution engage in ion substitution reactions between Ti4+and Si4+,and between Mg^(2+)and Ca^(2+),respectively.However,dissolved hydromagnesite cannot enter into the HA.The content of HA after the hydrothermal reactions changes slightly with the increase of anatase and periclase contents,but it notably decreases with increased quantities of rutile and hydromagnesite.Ti-bearing minerals reduce the particle size and enhance the specific surface area of HA,whereas Mg-bearing minerals exert the opposite effect.The morphology of HA with Ti-and Mg-bearing minerals changes from spherical particles to flocculent structure and hexagonal plate-like particles.
基金Project(50831006)supported by the National Natural Science Foundation of ChinaProject(2012BAB10B05)supported by the National Key Technologies R&D Program of China
文摘The population of surface broken bonds of some typical sulfide, oxide and salt-type minerals which may belong to cubic, tetragonal, hexagonal, or orthorhombic system, were calculated. In terms of the calculation results, the cleavage natures of these minerals were analyzed, and the relationship between surface broken bonds density and surface energy was also established. The results show that the surface broken bonds properties could be used to predict the cleavage nature of most of minerals, and the predicted cleavage planes agree well with those reported in previous literature. Moreover, this work explored a rule that, surface broken bonds density is directly related to surface energy with determination coefficient(R2) of over 0.8, indicating that the former is a dominant factor to determine the latter. Therefore, anisotropic surface broken bonds density can be used to predict the stability of mineral surface and the reactivity of surface atoms.
基金Project(51074182)supported by the National Natural Science Foundation of ChinaProject(2014M550422)supported by the Postdoctoral Science Foundation,ChinaProject(2015JJ3149)supported by the Natural Science Foundation of Hunan Province,China
文摘Arsenopyrite was artificially added into the thiosulfate leaching solution to clarify the role of arsenopyrite on the thiosulfate leaching of gold.The effect of arsenopyrite on the thiosulfate leaching of gold was studied by the thermodynamic calculation,mineral dissolution test,leaching test and XPS analysis.The results show that the thiosulfate consumption slightly increases with increasing the concentration of arsenopyrite,but the gold dissolution is obviously hindered.This may mainly attribute to the catalytic effect of arsenopyrite on the thiosulfate decomposition and the formation of passivation layer on the gold foil surface.The passivation layer likely consists of Cu2S or Cu(S2O3)35-,element S,FeOOH and iron arsenate,which is deduced from the XPS analysis.However,the negative effect of arsenopyrite can be eliminated by adding additives.It is found that both additives of sodium carboxymethyl(CMC) and sodium phosphate(SHPP) can not only decrease the thiosulfate consumption but also improve the gold dissolution.
基金Project(51474075)supported by the National Natural Science Foundation of China
文摘Gold bearing pyrite leaching was conducted in H2SO4-Fe2(SO4)3 system at different reaction temperatures,with different ferric ion concentrations,sulfuric acid concentrations and stirring speeds.The leaching kinetics and mechanism were studied.When the temperature ranged between 30-75 °C,the pyrite leaching was mainly controlled by chemical reaction with positive correlation to the ferric ion concentration.The activation energy obtained from Arrhenius empirical formula is 51.39 k J/mol.The EDS and XPS analyses suggest that the oxidation of sulfur within pyrite is through a series of intermediate stages,and eventually is oxidized to sulphate accompanied with the formation of element sulfur.This indicates a thiosulfate oxidation pathway of the gold bearing pyrite oxidation in H2SO4-Fe2(SO4)3 system.
基金Project 50374005 supported by the National Natural Science Foundation of China
文摘The enlarged production scale of underground non-ferrous metal mines is affected by many uncertain factors difficult to describe mathematically with any level of accuracy.The problem can be solved by a synthesis of artificial intelligence.Based on the analysis of the major factors affecting the scale of enlarged production,we first interpreted in detail the design principles and structure of the intelligent system.Secondly,we introduced an ANN subsystem.In order to ensure technological and scale efficien- cies of the training samples for ANN,we filtrated the samples with a DEA method.Finally,we trained the intelligent system,which was proved to be very efficient.
基金the National Natural Science Foundation of China (No.40371056)the Natural Science Foun-dation of Zhejiang Province, China (No.R305078).
文摘Concentrations of copper (Cu) and zinc (Zn) and various magnetic parameters in contaminated urban roadside soils were investigated using chemical analysis and magnetic measurements. The results revealed highly elevated Cu and Zn concentrations as well as magnetic susceptibility in the roadside soils. The mean concentrations of Cu and Zn in these roadside soils were almost twice those in average Chinese soils, with the mean magnetic susceptibility of the roadside soils reaching about 179 ×10^-8 m^3 kg^-1. This enhanced magnetic susceptibility was attributed to the presence of anthropogenic soft ferrimagnetic particles. A low frequency-dependent susceptibility (2.5%± 1.0%) observed in the roadside soils indicated the coarse multidomain (MD) ferrimagnetic grains to be the dominant contributor to magnetic susceptibility. The Cu and Zn concentration of the soils had highly significant linear correlations with magnetic susceptibility (P 〈 0.01), anhysteretic remanent magnetization (P 〈 0.01), and saturation isothermal remanent magnetization (P 〈 0.01). This suggested that heavy metals were associated with ferrimagnetic particles in soils, which were attributed to input of traffic emissions and industrial activities. Scanning electron microscopy and energy dispersive X-ray spectra of magnetic extracts of the roadside soils further suggested the llnk between the magnetic signal and concentrations of heavy metals. Thus, the magnetic parameters could provide a proxy measure for the level of heavy metal contamination and could be a potential tool for the detection and mapping of contaminated soils.
文摘Metal-rich transition metal sulfides recently gained increasing attention as electrocatalysts for the hydrogen evolution reaction(HER),as they are capable to overcome major challenges faced by sulfide-rich metal catalysts such as limited conductivity and the necessity of nanostructuring.Herein,we present the synthesis,characterization and electrocatalytic investigation of ternary metal-rich sulfide composites FexCo9-xS8 as well as Ni_(y)Co_(9-y)S_(8)(x=y=0-4.5),which possess pentlandite-type structures.In this study,we show a stepwise alteration of the binary cobalt pentlandite Co9S8 and report on the replacement of cobalt with up to 4.5 equivalents of either iron or nickel.These altered pentlandite composites facilitate the proton reduction in acidic media at different temperatures.We furthermore show that the stoichiometric variation has a decisive influence on the electrochemical activation/deactivation behavior of the catalysts under reductive electrocatalytic conditions.Here,Co-deficient composites display an improved HER performance in contrast to Co_(9)S_(8).Notably,Ni/Co compounds generally tend to show higher catalytic activities towards HER than their respective Fe/Co compounds.
基金the Higher Education Development Fund (FRV) of the Ministry of Education, Youth and Sportsof the Czech Republic (No.217/2005)the Czech Science Foundation (No.GAR 205/04/1292)the Ministry ofEducation, Youth and Sports of the Czech Republic (Nos.MSM 6046070901 and MSM 0021620855).
文摘The binding of metallic contaminants (Pb, Cd, and Zn) and As on soil constituents was studied on four highly contaxninated alluvial soil profiles from the mining/smelting district of Pribram (Czech Republic) using a combination of mineralogical and chemical methods. Sequential extraction analysis (SEA) was supplemented by mineralogical investigation of both bulk samples and heavy mineral fractions using X-ray diffraction analysis (XRD) and scanning electron microscopy with an energy dispersive X-ray spectrometer (SEM/EDS). The mineralogy of Fe and Mn oxides was studied by voltammetry of microparticles (VMP) and diffuse reflectance spectrometry (DRS). Zinc and Pb were predominantly bound in the reducible fraction attributed to Fe oxides and Mn oxides (mainly birnessite, Na4Mn14O27.9H2O), which were detected in soils by XRD and SEM/EDS. In contrast, Cd was the most mobile contaminant and was predominantly present in the exchangeable fraction. Arsenic was bound to the residual and reducible fractions (corresponding to Fe oxides or to unidentified Fe-Pb arsenates). SEM/EDS observations indicate the predominant affinity of Pb for Mn oxides, and to a lesser extent, for Fe oxides. Thus, a more suitable SEA procedure should be used for these mining-affected soils to distinguish between the contaminant fraction bound to Mn oxides and Fe oxides.
基金Project supported by the Science and Technology Ministry of Spain (Nos.REN 2003-03615 and CGL2006-10233)
文摘The continued effect of the pyrite-tailing oxidation on the mobility of arsenic, lead, zinc, cadmium, and copper was studied in a carbonated soil under natural conditions, with the experimental plot preserved with a layer of tailing covering the soil during three years. The experimental area is located in Southern Spain and was affected by a pyrite-mine spill. The climate in the area is typically Mediterranean, which determines the rate of soil alteration and element mobility. The intense alteration processes that occurred in the soil during three years caused important changes in its morphology and a strong degradation of the main soil properties. In this period, lead concentrated in the first 5 mm of the soil, with concentrations higher than 1500 mg kg?1, mainly associated to the neoformation of plumbojarosite. Arsenic was partially leached from the first 5 mm and mainly concentrated between 5–10 mm in the soil, with maximum values of 1239 mg kg-1; the retention of arsenates was related to the neoformation of iron hydroxysulfates (jarosite, schwertmannite) and oxyhydroxides (goethite, ferrihydrite), both with a variable degree of crystallinity. The mobility of Zn, Cd, and Cu was highly affected by pH, producing a stronger leaching in depth; their retention was related to the forms of precipitated aluminium and, in the case of Cu, also to the neoformation of hydroxysulfate.
文摘Pelletization of hematite ore requires high fineness and very high induration temperature(~1325 ℃) owing to its poor diffusion bonding unlike magnetite ore. Further, high-alumina hematite pellets show very high reduction degradation index(RDI) during low temperature(500-650 ℃) reduction due to their volume expansion and lattice distortion. Noamundi(India) hematite ore contains very high Al2O3(2.3%) with adverse ratio of alumina to silica(~2) for which, it shows very high RDI. In this work, the acid pellets prepared from Noamundi ore fines of optimum Blaine fineness show good cold crushing strength(CCS). However, it shows very high RDI(77%). In order to reduce RDI, Mg O in form of two different gangue-containing fluxes, such as pyroxenite and olivine in varying quantities has been added. The optimum requirement and performance of these fluxes has been examined and compared. Both pyroxenite and olivine fluxed pellets show significant lowering of RDI(26% and 23%, respectively) and improvement of other properties, viz CCS, swelling indices etc with good reducibility(70%-77%). Finally, a good quality acidic hematite pellet was developed from high-alumina ore without using any lime which is very important charge material in combination of basic sinter in blast furnace.