Chemical solution route was used to synthesize Bi3.1La0.9Ti3O12 and CoFe2O4. Alternate CoFe2O4/Bi3.1La0.9Ti3O12 layers were deposited on Pt substrate (Pt/TiO2/SiO2/Si) by spin coating. X-ray diffraction and SEM (sc...Chemical solution route was used to synthesize Bi3.1La0.9Ti3O12 and CoFe2O4. Alternate CoFe2O4/Bi3.1La0.9Ti3O12 layers were deposited on Pt substrate (Pt/TiO2/SiO2/Si) by spin coating. X-ray diffraction and SEM (scanning electron microscopy) studies show composite-like polycrystalline films. Films were studied for leakage current, dielectric response, ferroelectric and ferromagnetic properties. Leakage current was low (〈 10^-8 A) in electric field below 120 kV/cm, and the dielectric response shows relaxation. Dielectric loss (tan 8) reduces 〈 3% at 10^6 Hz. Two and four layer structures showed room temperature FE (ferroelectric) and FM (ferromagnetic) responses with FE Pr (polarization) 〉 25℃/cm2 and ferromagnetic Mr (memory) 〉 52 emu/cm3. Co-existence of FE and FM can be attributed to stress due to different crystal structures of the material involved in composite film structure.展开更多
文摘Chemical solution route was used to synthesize Bi3.1La0.9Ti3O12 and CoFe2O4. Alternate CoFe2O4/Bi3.1La0.9Ti3O12 layers were deposited on Pt substrate (Pt/TiO2/SiO2/Si) by spin coating. X-ray diffraction and SEM (scanning electron microscopy) studies show composite-like polycrystalline films. Films were studied for leakage current, dielectric response, ferroelectric and ferromagnetic properties. Leakage current was low (〈 10^-8 A) in electric field below 120 kV/cm, and the dielectric response shows relaxation. Dielectric loss (tan 8) reduces 〈 3% at 10^6 Hz. Two and four layer structures showed room temperature FE (ferroelectric) and FM (ferromagnetic) responses with FE Pr (polarization) 〉 25℃/cm2 and ferromagnetic Mr (memory) 〉 52 emu/cm3. Co-existence of FE and FM can be attributed to stress due to different crystal structures of the material involved in composite film structure.