期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
粉末冶金气门座的合金设计及组织性能
1
作者 邢晶 《企业技术开发(下旬刊)》 2015年第8期9-10,共2页
粉末冶金气门座具有高强度、耐磨损的特点,与日本进口的粉末冶金气门座的制作材料进行对比,分析得出,如果用高速球磨机球研磨超过24 h,得到的烧结组织就很均匀。并且在淬火处理后生成马氏体组织。提高材料的硬度。并通过加入钴、铬、镍... 粉末冶金气门座具有高强度、耐磨损的特点,与日本进口的粉末冶金气门座的制作材料进行对比,分析得出,如果用高速球磨机球研磨超过24 h,得到的烧结组织就很均匀。并且在淬火处理后生成马氏体组织。提高材料的硬度。并通过加入钴、铬、镍、钼、硅等合金元素增强材料的耐高温性、促进组织的细化。用Fe-Al合金来增加强度的材料,铝含量是与材料的耐磨性成正比的,但是铝元素的含量不得超过1.5%,否则会造成反效果。 展开更多
关键词 基粉末冶金 铁铝合金化合物 热处理工艺 显微组织 力学性能 耐磨性
下载PDF
Microstructure evolution and mechanical properties of Al-6.5Cu-0.6Mn-0.5Fe alloys with different Si additions 被引量:2
2
作者 Rui XU Bo LIN +3 位作者 Hao-yu LI Hua-qiang XIAO Yu-liang ZHAO Wei-wen ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第8期1583-1591,共9页
The effect of Si content on the microstructures and mechanical properties of the heat-treated Al-6.5 Cu-0.6 Mn-0.5 Fe alloy was investigated using image analysis,scanning electron microscopy(SEM),transmission electron... The effect of Si content on the microstructures and mechanical properties of the heat-treated Al-6.5 Cu-0.6 Mn-0.5 Fe alloy was investigated using image analysis,scanning electron microscopy(SEM),transmission electron microscopy(TEM),and tensile testing.The results show that the mechanical properties of Al-6.5 Cu-0.6 Mn-0.5 Fe alloys decrease slightly when the Si content is below 1.0%.This can be attributed to the comprehensive effect of microstructure evolution,including the increase of nano-sized α-Fe,the coarsened grain size,and an increase in Al2 Cu content at the grain boundary.When the Si content is 1.5%,the mechanical properties of the Al-6.5 Cu-0.6 Mn-0.5 Fe alloys decrease significantly,and this can be attributed to the agglomerated second intermetallics,which is resulted from the formation of excess Si particles. 展开更多
关键词 Al-Cu alloys iron-rich intermetallics SI tensile properties
下载PDF
Microstructure evolution and corrosion behavior of Fe-Al-based intermetallic aluminide coatings under acidic condition 被引量:4
3
作者 Wen-juan LIU Yu WANG +4 位作者 Hong-bin GE Li LI Yi DING Ling-gang MENG Xing-guo ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第10期2028-2043,共16页
Two Fe-Al-based intermetallic aluminide coatings were fabricated on 430-SS(Fe-Cr)and 304-SS(Fe-Cr-Ni)substrates by pressure-assisted solid diffusion bonding with coating on pure Fe as control.The microstructure and in... Two Fe-Al-based intermetallic aluminide coatings were fabricated on 430-SS(Fe-Cr)and 304-SS(Fe-Cr-Ni)substrates by pressure-assisted solid diffusion bonding with coating on pure Fe as control.The microstructure and intermetallic phases of the coatings were characterized by SEM,EDS and EBSD.A network of Cr2Al13 with matrix of Fe4Al13 was formed by inter-diffusing of Al with the substrates.The corrosion behavior of intermetallic coatings was investigated in 0.5 mol/L HCl solution by mass-loss,OCP,Tafel plot and EIS.It was found that corrosion resistance was greatly enhanced by dozens of times after the addition of Cr and Ni compared with that on pure Fe.The presence of cracks in the coating on 430-SS provided a pathway for corrosion media to penetrate to the substrate and accelerated the corrosion rate.Moreover,the corrosion product was analyzed by XRD,demonstrating that the addition of Cr and Ni facilitated the formation of more corrosion resistant phases,and therefore improved corrosion resistance. 展开更多
关键词 INTERMETALLIC iron aluminide stainless steel hydrogen chloride CORROSION
下载PDF
Microstructure and high temperature tensile properties of Al-Si-Cu-Mn-Fe alloys prepared by semi-solid thixoforming 被引量:2
4
作者 Bo LIN Tao FAN +3 位作者 Hao-yu LI Yu-liang ZHAO Wei-wen ZHANG Kun LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第8期2232-2249,共18页
The differences in the microstructure and elevated temperature tensile properties of gravity die cast,squeeze cast,and semi-solid thixoformed Al-Si-Cu-Mn-Fe alloys after thermal exposure at 300℃were discussed.The res... The differences in the microstructure and elevated temperature tensile properties of gravity die cast,squeeze cast,and semi-solid thixoformed Al-Si-Cu-Mn-Fe alloys after thermal exposure at 300℃were discussed.The results demonstrate that the elevated temperature tensile properties of semi-solid thixoformed alloys were significantly higher than those of gravity die cast and squeeze cast alloys,especially after thermal exposure for 100 h.The ultimate tensile strength(UTS)of semi-solid thixoformed alloys after thermal exposure at 300℃for 0.5,10 and 100 h were 181,122 and 110 MPa,respectively.The UTS values of semi-solid thixoformed alloys were higher than those of heat resistant aluminum alloys used in commercial applications.The enhanced elevated temperature tensile properties of semi-solid thixoformed experimental alloys after thermal exposure can be attributed to the combined reinforcement of precipitation strengthening and grain boundary strengthening due to thermally stable intermetallic phases as well as suitable grain size. 展开更多
关键词 Al-Si alloys iron-rich intermetallics semi-solid thixoforming MICROSTRUCTURE tensile properties thermal exposure
下载PDF
Influence of Heat Treatment on Microstructure and Sliding Wear Behavior of Fe-Al/WC Composite Coatings 被引量:1
5
作者 朱子新 杜则裕 +2 位作者 徐滨士 马世宁 张伟 《Transactions of Tianjin University》 EI CAS 2003年第2期93-97,共5页
An experimental study has been carried out to investigate the influence of heat treatment at 300 ℃,450 ℃,550 ℃,650 ℃ and 800 ℃ on the microstructure and sliding wear behavior of Fe Al/WC intermetallic composite c... An experimental study has been carried out to investigate the influence of heat treatment at 300 ℃,450 ℃,550 ℃,650 ℃ and 800 ℃ on the microstructure and sliding wear behavior of Fe Al/WC intermetallic composite coatings produced by high velocity arc spraying (HVAS) and cored wires. The result shows, the main phases in both as sprayed and heat treated Fe Al/WC composite coatings are iron aluminide intermetallics (Fe 3Al+FeAl) and α as well as a little oxide (Al 2O 3) and carbides (WC, W 2C, Fe 2W 2C and Fe 6W 6C). After heat treated at 450-650 ℃, dispersion strengthening of Fe 2W 2C and Fe 6W 6C will lead to a rise in microhardness of the coatings. The microhardness is likely to be the most important factor which influences the sliding wear behavior of the coatings. Increasing the microhardness through heat treatment will improve the sliding wear resistance of the Fe Al/WC composite coatings. 展开更多
关键词 high velocity arc spraying composite coating iron aluminide intermetallics WC heat treatment MICROSTRUCTURE sliding wear behavior
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部