The Ni-Cr alloy electrodepositing technology on iron substrate in the chlorid-sulfate solution and the impacts of main processing parameters on coating composition were studied. The optimal Ni-Cr alloy electrodepositi...The Ni-Cr alloy electrodepositing technology on iron substrate in the chlorid-sulfate solution and the impacts of main processing parameters on coating composition were studied. The optimal Ni-Cr alloy electrodepositing conditions are that the cathode current density is 16 A/dm^2,the plating solution temperature is 30℃ and the pH value is 2.5. The bright, compact coating gained under the optimal conditions has good cohesion and 24.1% Cr content. The results show that the coating is composed of crystalline, the average grain size is 82 nm and the higher the Cr content of coating, the larger the rigidity, and the higher the corrosion resistance. The rigidity of coating reaches 78.6(HR30T) and the passivation area broadens to 1.4 V when the Cr content of coating is 24.1%.展开更多
The complete [ NiFe]-hydrogenase genes were cloned from cyanobacterium, Arthrospira platensis FACHB341, using PCR and in-vitro cloning. The total length is 2078bp, including hoxY 549bp, hoxH 1431bp and the spacer in b...The complete [ NiFe]-hydrogenase genes were cloned from cyanobacterium, Arthrospira platensis FACHB341, using PCR and in-vitro cloning. The total length is 2078bp, including hoxY 549bp, hoxH 1431bp and the spacer in between 98bp. There is a stem-loop structure, downstream of the hoxY gene, serving as a transcription terminator. The deduced amino acid sequences of HoxY aud HoxH consist of acidic amino acid of 15.8% and 12.0%; alkalitropic amino acid of 11.9% and 15.3%; hydrophobic amino acid of 46.3% and 41.0%, respectively. The similarities of hoxY and hoxH genes in Arthrospira platensis FACHB341 to their homologues in other cyanobacteria were compared respectively. The secondary structures and 3D models of small and large subunits of [ NiFe]-hydrogenase were predicted by using 3D-PSSM.展开更多
Nucleation mechanism and technological process for Ni-Fe co-deposition with a relatively high Fe^(2+)concentration surrounded were described,and the effects of Fe^(2+) concentration,solution pH,temperature,and sodium ...Nucleation mechanism and technological process for Ni-Fe co-deposition with a relatively high Fe^(2+)concentration surrounded were described,and the effects of Fe^(2+) concentration,solution pH,temperature,and sodium dodecyl sulfonate concentration were investigated.Electrochemical experiments demonstrate that iron's electrodeposition plays a leading role in the Ni-Fe co-deposition process,and the co-deposition nucleation mechanism accords with a progressive nucleation.Temperature increase does favor in increasing nickel content in the ferronickel(Ni-Fe co-deposition products),while Fe^(2+) concentration increase does not.When solution pH is higher than 3.5,nickel content in the ferronickel decreases with pH because of the hydrolysis of Fe^(2+).With the current density of 180 A/m^2,Na_2SO_4 concentration of 100 g/L and Ni^(2+) concentration of 60 g/L,a smooth ferronickel deposit containing 96.21% Ni can be obtained under the conditions of temperature of 60 °C,Fe^(2+) concentration of 0.3 g/L,solution pH of 3 and sodium dodecyl sulfonate concentration of 40 mg/L.展开更多
NiFe(oxy)hydroxides nanosheets were synthesized on nickel foams via co-precipitation and electrochemical activation. It is found that the phosphate precursors(Na_(3)PO_(4), Na_(2)HPO_(4)and NaH_(2)PO_(4)) have diverse...NiFe(oxy)hydroxides nanosheets were synthesized on nickel foams via co-precipitation and electrochemical activation. It is found that the phosphate precursors(Na_(3)PO_(4), Na_(2)HPO_(4)and NaH_(2)PO_(4)) have diverse effects on the morphology and thus the oxygen evolution reaction activity of the formed final catalysts. The resulting NiFe(oxy)hydroxides nanosheets prepared with Na_(2)HPO_(4)demonstrate a low overpotential of 205 m V to achieve a current density of 50 mA/cm^(2) with a Tafel slope down to 30 mV/dec in 1 mol/L KOH, and remain stable for 20 h during stability test.展开更多
There remains a challenge in designing electrocatalysts for water oxidation to create highly efficient catalytic sites for the oxygen evolution reaction(OER)while maintaining their robustness at large outputs.Herein,a...There remains a challenge in designing electrocatalysts for water oxidation to create highly efficient catalytic sites for the oxygen evolution reaction(OER)while maintaining their robustness at large outputs.Herein,an etching-assisted synthesis approach was developed to integrate highly active NiFe2O4 nanoparticles with a robust and active NiOOH scaffold directly on commercial stainless steel.A precise selenization strategy was then introduced to achieve selective Se doping of NiFe2O4 to further enhance its intrinsic OER activity while maintaining a three-dimensional NiOOH nanosheet array as a robust scaffold for prompt mass transfer and gas evolution.The resulting NiFe2O4-xSex/NiOOH electrode exhibited superior electrocatalytic activity with low overpotentials of 153 and 259 mV to deliver benchmark current densities of 10 and 500 mA cm^(−2),respectively.More importantly,the catalyst exhibited remarkable durability at a stable current output of 100 mA cm^(−2)for hundreds of hours.These findings may open up opportunities for exploring efficient and robust electrocatalysts for scalable hydrogen production with practical materials.展开更多
Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air batteries, has attracted increasing attention for clean energy generation and efficient e...Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air batteries, has attracted increasing attention for clean energy generation and efficient energy storage. Nickel/iron (NiFe)-based compounds have been known as active OER catalysts since the last century, and renewed interest has been witnessed in recent years on developing advanced NiFe-based materials for better activity and stability. In this review, we present the early discovery and recent progress on NiFe-based OER electrocatalysts in terms of chemical properties, synthetic methodologies and catalytic performances. The advantages and disadvantages of each class of NiFe-based compounds are summarized, including NiFe alloys, electrodeposited films and layered double hydroxide nanoplates. Some mechanistic studies of the active phase of NiFe-based compounds are introduced and discussed to give insight into the nature of active catalytic sites, which could facilitate further improving NiFe based OER electrocatalysts. Finally, some applications of NiFe- based compounds for OER are described, including the development of an electrolyzer operating with a single AAA battery with voltage below 1.5 V and high performance rechargeable Zn-air batteries.展开更多
基金Project (59674025) supported by the National Natural Science Foundation of China
文摘The Ni-Cr alloy electrodepositing technology on iron substrate in the chlorid-sulfate solution and the impacts of main processing parameters on coating composition were studied. The optimal Ni-Cr alloy electrodepositing conditions are that the cathode current density is 16 A/dm^2,the plating solution temperature is 30℃ and the pH value is 2.5. The bright, compact coating gained under the optimal conditions has good cohesion and 24.1% Cr content. The results show that the coating is composed of crystalline, the average grain size is 82 nm and the higher the Cr content of coating, the larger the rigidity, and the higher the corrosion resistance. The rigidity of coating reaches 78.6(HR30T) and the passivation area broadens to 1.4 V when the Cr content of coating is 24.1%.
文摘The complete [ NiFe]-hydrogenase genes were cloned from cyanobacterium, Arthrospira platensis FACHB341, using PCR and in-vitro cloning. The total length is 2078bp, including hoxY 549bp, hoxH 1431bp and the spacer in between 98bp. There is a stem-loop structure, downstream of the hoxY gene, serving as a transcription terminator. The deduced amino acid sequences of HoxY aud HoxH consist of acidic amino acid of 15.8% and 12.0%; alkalitropic amino acid of 11.9% and 15.3%; hydrophobic amino acid of 46.3% and 41.0%, respectively. The similarities of hoxY and hoxH genes in Arthrospira platensis FACHB341 to their homologues in other cyanobacteria were compared respectively. The secondary structures and 3D models of small and large subunits of [ NiFe]-hydrogenase were predicted by using 3D-PSSM.
基金Project(51574135)supported by the National Natural Science Foundation of ChinaProject(KKPT201563022)supported by Collaborative Innovation Center of Kunming University of Science and Technology,China
文摘Nucleation mechanism and technological process for Ni-Fe co-deposition with a relatively high Fe^(2+)concentration surrounded were described,and the effects of Fe^(2+) concentration,solution pH,temperature,and sodium dodecyl sulfonate concentration were investigated.Electrochemical experiments demonstrate that iron's electrodeposition plays a leading role in the Ni-Fe co-deposition process,and the co-deposition nucleation mechanism accords with a progressive nucleation.Temperature increase does favor in increasing nickel content in the ferronickel(Ni-Fe co-deposition products),while Fe^(2+) concentration increase does not.When solution pH is higher than 3.5,nickel content in the ferronickel decreases with pH because of the hydrolysis of Fe^(2+).With the current density of 180 A/m^2,Na_2SO_4 concentration of 100 g/L and Ni^(2+) concentration of 60 g/L,a smooth ferronickel deposit containing 96.21% Ni can be obtained under the conditions of temperature of 60 °C,Fe^(2+) concentration of 0.3 g/L,solution pH of 3 and sodium dodecyl sulfonate concentration of 40 mg/L.
基金supported by the National Natural Science Foundation of China (Nos. 11904411, 52072308)the Fundamental Research Funds for the Central Universities, China (Nos. 3102021MS0404, 3102019JC001)。
文摘NiFe(oxy)hydroxides nanosheets were synthesized on nickel foams via co-precipitation and electrochemical activation. It is found that the phosphate precursors(Na_(3)PO_(4), Na_(2)HPO_(4)and NaH_(2)PO_(4)) have diverse effects on the morphology and thus the oxygen evolution reaction activity of the formed final catalysts. The resulting NiFe(oxy)hydroxides nanosheets prepared with Na_(2)HPO_(4)demonstrate a low overpotential of 205 m V to achieve a current density of 50 mA/cm^(2) with a Tafel slope down to 30 mV/dec in 1 mol/L KOH, and remain stable for 20 h during stability test.
文摘There remains a challenge in designing electrocatalysts for water oxidation to create highly efficient catalytic sites for the oxygen evolution reaction(OER)while maintaining their robustness at large outputs.Herein,an etching-assisted synthesis approach was developed to integrate highly active NiFe2O4 nanoparticles with a robust and active NiOOH scaffold directly on commercial stainless steel.A precise selenization strategy was then introduced to achieve selective Se doping of NiFe2O4 to further enhance its intrinsic OER activity while maintaining a three-dimensional NiOOH nanosheet array as a robust scaffold for prompt mass transfer and gas evolution.The resulting NiFe2O4-xSex/NiOOH electrode exhibited superior electrocatalytic activity with low overpotentials of 153 and 259 mV to deliver benchmark current densities of 10 and 500 mA cm^(−2),respectively.More importantly,the catalyst exhibited remarkable durability at a stable current output of 100 mA cm^(−2)for hundreds of hours.These findings may open up opportunities for exploring efficient and robust electrocatalysts for scalable hydrogen production with practical materials.
文摘Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air batteries, has attracted increasing attention for clean energy generation and efficient energy storage. Nickel/iron (NiFe)-based compounds have been known as active OER catalysts since the last century, and renewed interest has been witnessed in recent years on developing advanced NiFe-based materials for better activity and stability. In this review, we present the early discovery and recent progress on NiFe-based OER electrocatalysts in terms of chemical properties, synthetic methodologies and catalytic performances. The advantages and disadvantages of each class of NiFe-based compounds are summarized, including NiFe alloys, electrodeposited films and layered double hydroxide nanoplates. Some mechanistic studies of the active phase of NiFe-based compounds are introduced and discussed to give insight into the nature of active catalytic sites, which could facilitate further improving NiFe based OER electrocatalysts. Finally, some applications of NiFe- based compounds for OER are described, including the development of an electrolyzer operating with a single AAA battery with voltage below 1.5 V and high performance rechargeable Zn-air batteries.