Direct ethanol fuel cell is a promising low temperature fuel cell,but its development is hindered by sluggish kinetics of anode catalysts for ethanol oxidation.Here a high efficient platinum/tin oxide/Graphene nanocom...Direct ethanol fuel cell is a promising low temperature fuel cell,but its development is hindered by sluggish kinetics of anode catalysts for ethanol oxidation.Here a high efficient platinum/tin oxide/Graphene nanocomposite is synthesized through a facile and environmentally benign method.The structure and morphology are carefully characterized by X-ray diffraction and Transmission electron microscopy,showing a clear platinum/tin oxide heterostructure uniformly dispersed on graphene support.This catalyst demonstrates the highest activity among the reported catalysts and much higher durability towards ethanol oxidation compared to conventional platinum nanocatalysts.The ultrahigh activity originates from promoted removal of poisoning carbon monoxide immediate species on platinum due to a strong electronic donating effect from both tin oxide and graphene,which is fully supported by carbon monoxide stripping and X-ray photoelectron spectroscopy analysis.Our platinum/tin oxide/Graphene appears to be a promising candidate for ethanol oxidation electrocatalysts.展开更多
基金grateful to the financial support from the Key Research and Development Project of Tianjin(18ZXJMTG00180)the National Nature Science Foundation of China(21433003)~~
文摘Direct ethanol fuel cell is a promising low temperature fuel cell,but its development is hindered by sluggish kinetics of anode catalysts for ethanol oxidation.Here a high efficient platinum/tin oxide/Graphene nanocomposite is synthesized through a facile and environmentally benign method.The structure and morphology are carefully characterized by X-ray diffraction and Transmission electron microscopy,showing a clear platinum/tin oxide heterostructure uniformly dispersed on graphene support.This catalyst demonstrates the highest activity among the reported catalysts and much higher durability towards ethanol oxidation compared to conventional platinum nanocatalysts.The ultrahigh activity originates from promoted removal of poisoning carbon monoxide immediate species on platinum due to a strong electronic donating effect from both tin oxide and graphene,which is fully supported by carbon monoxide stripping and X-ray photoelectron spectroscopy analysis.Our platinum/tin oxide/Graphene appears to be a promising candidate for ethanol oxidation electrocatalysts.