Primitive mantle normalized Platinum group elements (PGE) concentration patterns for the Zhengziyanwo intrusion and Dashibao Formation basalts are of positive slope, similar to most of the world class magmatic Ni Cu P...Primitive mantle normalized Platinum group elements (PGE) concentration patterns for the Zhengziyanwo intrusion and Dashibao Formation basalts are of positive slope, similar to most of the world class magmatic Ni Cu PGE sulfide deposits. Characters of this intrusion and its related ores and Dashibao Formation basalts are their negative Pt anomaly and high concentration of Rh relative to Pt and Pd, facts being interpreted to be the results of crystallization and fractionation of Pt alloys and spinel phase free crystallization history for the magma, respectively. PGE parameters of the Dashibao Formation basalts are consistent with the general trend of those found for the Zhengziyanwo intrusion, and this might infer a genetic link between them.展开更多
Forty-two Cenozoic (mostly Miocene) basalt samples from Jining, Chifeng, Fansi, Xiyang, and Zuoquan areas of the North China Craton (the NCC basalts hereafter) were analyzed for platinum-group elements (PGE, incl...Forty-two Cenozoic (mostly Miocene) basalt samples from Jining, Chifeng, Fansi, Xiyang, and Zuoquan areas of the North China Craton (the NCC basalts hereafter) were analyzed for platinum-group elements (PGE, including Os, It, Ru, Rh, Pt, and Pd). Most of them are alkaline basalts and tholeiites and all of them display little crustal contamination. The total PGE contents of the NCC basalts vary from 0.1 to 0.9 ppb, much lower than those of the primitive mantle values of 23.5 ppb. Primitive man- tie-normalized PGE patterns of these basalts define positive slopes and Pd/Ir ratios vary from 1.2 to 25. In terms of both PGE contents and Pd/Ir ratios, they are quite similar to the mid-ocean ridge basalts. There are no obvious negative correlations be- tween PGE vs. MgO, Ni, and Cu in the NCC basalts, indicating that fractional crystallization of olivine, pyroxene, and/or sul- fides during magmatic process cannot be the controlling factor for the observed PGE variation. The observed Pd/Ir variations of the NCC basalts require involvement of non-chondritic heterogeneous mantle sources. Based on Sr-Nd-Pb-Hf isotopic sys- tematics and incompatible-element signatures, a mixing of partial melts from both asthenospheric peridotites and enclosed mantle eclogites at the top of asthenosphere was proposed for the origin of these NCC basalts. The lenses of eclogites are de- rived from upwelling of recycled continental crust during the westward subduction of the Pacific plate from the -600 km dis- continuity zone. The PGE geochemistry of these basalts provides independent evidence to support this conclusion and the ob- served Pd/Ir variations may reflect variations in proportions of tapped peridotitic and eclogitic melts.展开更多
基金supported by NSFC(Grant Nos.40072037,40273025)NKBRSF Project(Grant No.G1999043200)
文摘Primitive mantle normalized Platinum group elements (PGE) concentration patterns for the Zhengziyanwo intrusion and Dashibao Formation basalts are of positive slope, similar to most of the world class magmatic Ni Cu PGE sulfide deposits. Characters of this intrusion and its related ores and Dashibao Formation basalts are their negative Pt anomaly and high concentration of Rh relative to Pt and Pd, facts being interpreted to be the results of crystallization and fractionation of Pt alloys and spinel phase free crystallization history for the magma, respectively. PGE parameters of the Dashibao Formation basalts are consistent with the general trend of those found for the Zhengziyanwo intrusion, and this might infer a genetic link between them.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41173036,40534022)the Chinese Academy of Sciences(Grant No.KZCX2-YW-103)
文摘Forty-two Cenozoic (mostly Miocene) basalt samples from Jining, Chifeng, Fansi, Xiyang, and Zuoquan areas of the North China Craton (the NCC basalts hereafter) were analyzed for platinum-group elements (PGE, including Os, It, Ru, Rh, Pt, and Pd). Most of them are alkaline basalts and tholeiites and all of them display little crustal contamination. The total PGE contents of the NCC basalts vary from 0.1 to 0.9 ppb, much lower than those of the primitive mantle values of 23.5 ppb. Primitive man- tie-normalized PGE patterns of these basalts define positive slopes and Pd/Ir ratios vary from 1.2 to 25. In terms of both PGE contents and Pd/Ir ratios, they are quite similar to the mid-ocean ridge basalts. There are no obvious negative correlations be- tween PGE vs. MgO, Ni, and Cu in the NCC basalts, indicating that fractional crystallization of olivine, pyroxene, and/or sul- fides during magmatic process cannot be the controlling factor for the observed PGE variation. The observed Pd/Ir variations of the NCC basalts require involvement of non-chondritic heterogeneous mantle sources. Based on Sr-Nd-Pb-Hf isotopic sys- tematics and incompatible-element signatures, a mixing of partial melts from both asthenospheric peridotites and enclosed mantle eclogites at the top of asthenosphere was proposed for the origin of these NCC basalts. The lenses of eclogites are de- rived from upwelling of recycled continental crust during the westward subduction of the Pacific plate from the -600 km dis- continuity zone. The PGE geochemistry of these basalts provides independent evidence to support this conclusion and the ob- served Pd/Ir variations may reflect variations in proportions of tapped peridotitic and eclogitic melts.