The intrinsic kinetics of water gas shift reaction over Pt/CeO 2-ZrO 2 was investigated.Experiments were carried out by means of orthogonal design.Parameters of power-type rate model of water gas shift reaction were d...The intrinsic kinetics of water gas shift reaction over Pt/CeO 2-ZrO 2 was investigated.Experiments were carried out by means of orthogonal design.Parameters of power-type rate model of water gas shift reaction were determined by the non-linear least-square parameter estimation method.The kinetics of water gas shift reaction over Pt/CeO 2-ZrO 2 was different from that of common commercial catalysts.The accuracy of experimental data and kinetics model was proved by F-examination.展开更多
Leached Pt-Fe and Pt-Co catalysts were prepared by acid leaching the reduced catalysts in acid solution. Oxidation treatments of leached catalysts produced the structure o f metal oxides decorat-ing the surface of...Leached Pt-Fe and Pt-Co catalysts were prepared by acid leaching the reduced catalysts in acid solution. Oxidation treatments of leached catalysts produced the structure o f metal oxides decorat-ing the surface of nanoparticles. The fully oxidized Fe2O3 and Co3O4 species on Pt nanoparticle sur-faces result in the low performance of the CO complete oxidation (COOX) reaction. In contrast, un-saturated FeO and CoO surface species can be formed during exposure to the CO preferential oxida-tion (CO-PROX) reaction with an excess of H2, leading to a high O2 activation ability and enhancing the CO-PROX activity. The FeOx surface structures can be transformed between these two states by varying the reactive gas environments, exhibiting oscillating activity in these two reactions. Con-versely, the CoO surface structure formed in the H2 -rich atmosphere is stable when exposed to the COOX reaction and exhibits similar activity in these two reactions. It is hoped that this work may assist in understanding the important role of surface oxides in real reactions.展开更多
Flower-like tin oxide-supported platinum(Pt/SnOx) with a hierarchical structure was synthesized by a hydrothermal method and characterized by XRD,SEM,TEM,high resolution TEM,XPS and nitrogen adsorption.The flower-li...Flower-like tin oxide-supported platinum(Pt/SnOx) with a hierarchical structure was synthesized by a hydrothermal method and characterized by XRD,SEM,TEM,high resolution TEM,XPS and nitrogen adsorption.The flower-like Pt/SnOx microspheres of 1 μm in diameter were composed of staggered petal-like nanosheets with a thickness of 20 nm.Pt nanoparticles(NPs) of 2-3 nm were well dispersed on the SnOx nanosheets.The catalyst was tested in the catalytic oxidation of gaseous formaldehyde(HCHO) at room temperature,and exhibited enhanced activity compared to Pt NPs supported on commercial SnO and ground SnOx.HCHO removal of 87%was achieved over the hierarchical Pt/SnOx after 1 h of reaction,which was 1.5 times that over the ground SnOx-supported Pt(Pt/g-SnOx),and the high activity was maintained after six recycles,showing the high stability of this catalyst.HCHO decomposition kinetics was modeled as a second order reaction.The reaction rate constant for Pt/SnOx was 5.6 times higher than Pt/g-SnOx.The hierarchical pore structure was beneficial for the diffusion and adsorption of HCHO molecules,and the highly dispersed Pt NPs on the SnOx nanosheets were the active sites for the oxidative decomposition of HCHO into CO2 and H2O.This study provided a promising approach for designing efficient catalysts for indoor HCHO removal at ambient temperature.展开更多
Zr‐Al mixed oxide supported Pt catalysts with different Zr/Al mole ratios(2.5%Pt/ZrxAl(1–x)Oy) were synthesized by an impregnation method and used for the selective hydrogenolysis of glycerol to n‐propanol in a...Zr‐Al mixed oxide supported Pt catalysts with different Zr/Al mole ratios(2.5%Pt/ZrxAl(1–x)Oy) were synthesized by an impregnation method and used for the selective hydrogenolysis of glycerol to n‐propanol in an autoclave reactor. The catalysts were fully characterized by X‐ray powder diffrac‐tion, Brunauer‐Emmett‐Teller surface area analysis, CO chemisorption, H2 temperature‐ pro‐grammed reduction, pyridine‐infrared spectroscopy, and NH3‐temperature‐programmed desorp‐tion. The results revealed that the Zr/Al ratio on the support significantly affected the size of the platinum particles and the properties of the acid sites on the catalysts. The catalytic performance was well correlated with the acidic properties of the catalyst; specifically, more acid sites contrib‐uted to the conversion and strong acid sites with a specific intensity contributed to the deep dehy‐dration of glycerol to form n‐propanol. Among the tested catalysts, 2.5 wt% Pt/Zr(0.7)Al(0.3)Oy exhibited excellent selectivity for n‐propanol with 81.2% glycerol conversion at 240 °C and 6.0 MPa H2 pres‐sure when 10% aqueous glycerol solution was used as the substrate. In addition, the effect of vari‐ous reaction parameters, such as H2 content, reaction temperature, reaction time, and number of experimental cycles were studied to determine the optimized reaction conditions and to evaluate the stability of the catalyst.展开更多
Objective:To explore the protective effect of sound preconditioning against ototoxicity induced by cisplatin and its possible mechanism with respect to the nitric oxide (NO) pathway. Methods: Albino guinea pigs we...Objective:To explore the protective effect of sound preconditioning against ototoxicity induced by cisplatin and its possible mechanism with respect to the nitric oxide (NO) pathway. Methods: Albino guinea pigs were divided into silent control, CDDP,sound preconditioning and sound preconditioning+CDDP groups. The animals of the CDDP group were injected with cisplatin intravenously 8 mg/kg b.w. The animals in the sound preconditioning were exposed to white noise at 85dB SPL, 5h/d, for 10 d (sound preconditioning). The animals in the sound preconditioning+CDDP group were treated with sound preconditioning first and then administrated with cisplatin intravenously 8 mg/kg b.w. Hearing thresholds of auditory brainstem responses (ABRs) of all animals were measured to evaluate hearing function. Hair cell loss was estimated via surface preparation. Cochlear tissue was assayed for measurement of NO level and immunohistochemistry method was used for inducible nitric oxide synthase (iNOS) analysis. Results: There was no significant difference between the silent control and sound preconditioning animals with respect to either functional or histological measures. Among the animals in the CDDP group, there was a significant elevation of threshold at the high test frequencies after administration compared with the silent control group (P〈0. 05). Morphological examination showed that there was obvious loss of the OHC, especially in the third row of the basal turn. The NO level and immunoreactivity to iNOS in this group were higher and more intensive than those of the silent control group (P〈0. 05). The ABR thresholds in the sound preconditioning + CDDP group were much lower than those of the CDDP group (P〈0.05). Slight sporadic loss of OHC was found in this group. The immunoreactivity to iNOS and the level of NO in cochlea decreased significantly compared with the CDDP group (P〈 0. 05). Conclusion: It is suggested that sound preconditioning, to some extent, provides protective effect against ototoxicity of cisplatin. The excess synthesis of NO induced by the over-expressed of iNOS may be involved in the CDDP induced ototoxicity. The possible mechanism is related to suppression of the NO pathway.展开更多
TiN, platinum (Pt) black and iridium oxide are introduced to the stimulating sites to improve the performance of the flexible electrode. Low temperature process is used to fabricate the modifying films. TiN is coate...TiN, platinum (Pt) black and iridium oxide are introduced to the stimulating sites to improve the performance of the flexible electrode. Low temperature process is used to fabricate the modifying films. TiN is coated on the gold sites by magnetron sputtering while platinum black and iridium oxide are coated by electroplating and electrodeposifion, respectively. The impedance of the electrode decreases dramatically after modification. The combined analysis of surface morphology and cyclic voltammograms (CV) in phosphate buffer saline (PBS) solution indicates that the modified electrode sites have larger electrode-electrolyte capacitance and smaller faradic resistance than unmodified sites, thus they have smaller electrochemical impedances.展开更多
Pt is a catalyst in proton exchange membrane fuel cell (PEMFC), and its activity will be degraded in the air due to the exist- ence of SOx impurities. On strategy is introducing of Mo into the Pt catalyst because it...Pt is a catalyst in proton exchange membrane fuel cell (PEMFC), and its activity will be degraded in the air due to the exist- ence of SOx impurities. On strategy is introducing of Mo into the Pt catalyst because it can improve the SOx-tolerance capacity. Based on the aforementioned phenomenon, a density function theory (DFT) study on SOx adsorbed on Pt(111) and PtMo(111) was performed to enhance Pt catalytic activity. The adsorption energy of adsorbed species, the net change, partial density of state (PDOS), and d-band center were calculated and analyzed comparatively. The results show that the presence of Mo-atom weakens the S-Pt bond strength and reduces the adsorption energies for SO2, S and SO3 on PtMo(111). Moreover, the Mo atom weakens the effects of SO2 on the PtMo(lll) electronic structure and makes the catalyst maintains its original electronic structure after SO2 adsorption as compared with Pt(111).展开更多
The aim of this review article is to introduce recent studies on an emergent class of singlet oxygen photosensitizers of potential applications to the photodynamic therapy,with a primary focus on the cyclometalated tr...The aim of this review article is to introduce recent studies on an emergent class of singlet oxygen photosensitizers of potential applications to the photodynamic therapy,with a primary focus on the cyclometalated transition-metal complexes.Singlet oxygen photosensitization performances of various cyclometalated Ir and Pt scaffolds are reviewed,and the general photophysical properties of relevant systems and the mechanisms of singlet oxygen production via photo-sensitization are also briefly discussed.Thus far,investigations of singlet oxygen sensitization by such Ir and Pt complexes are mainly carried out in organic solvents and under non-physiological conditions,while some research efforts have been made at examining the feasibility of applying pertinent cyclometalated complexes to photodynamic therapy.展开更多
With visible light(λ=450 nm) irradiation of a catalytic amount of platinum(Ⅱ) terpyridyl complex, 1,3,5-triaryl-2-pyrazolines can be smoothly converted to their corresponding pyrazoles and hydrogen in quantitative y...With visible light(λ=450 nm) irradiation of a catalytic amount of platinum(Ⅱ) terpyridyl complex, 1,3,5-triaryl-2-pyrazolines can be smoothly converted to their corresponding pyrazoles and hydrogen in quantitative yields with no use of any oxidant at room temperature.展开更多
文摘The intrinsic kinetics of water gas shift reaction over Pt/CeO 2-ZrO 2 was investigated.Experiments were carried out by means of orthogonal design.Parameters of power-type rate model of water gas shift reaction were determined by the non-linear least-square parameter estimation method.The kinetics of water gas shift reaction over Pt/CeO 2-ZrO 2 was different from that of common commercial catalysts.The accuracy of experimental data and kinetics model was proved by F-examination.
基金supported by the National Natural Science Foundation of China(21403004,21403003)~~
文摘Leached Pt-Fe and Pt-Co catalysts were prepared by acid leaching the reduced catalysts in acid solution. Oxidation treatments of leached catalysts produced the structure o f metal oxides decorat-ing the surface of nanoparticles. The fully oxidized Fe2O3 and Co3O4 species on Pt nanoparticle sur-faces result in the low performance of the CO complete oxidation (COOX) reaction. In contrast, un-saturated FeO and CoO surface species can be formed during exposure to the CO preferential oxida-tion (CO-PROX) reaction with an excess of H2, leading to a high O2 activation ability and enhancing the CO-PROX activity. The FeOx surface structures can be transformed between these two states by varying the reactive gas environments, exhibiting oscillating activity in these two reactions. Con-versely, the CoO surface structure formed in the H2 -rich atmosphere is stable when exposed to the COOX reaction and exhibits similar activity in these two reactions. It is hoped that this work may assist in understanding the important role of surface oxides in real reactions.
基金supported by the National Natural Science Foundation of China (51320105001, 51372190, 21573170, 51272199, 21433007)the National Basic Research Program of China (973 program, 2013CB632402)+2 种基金the Natural Science Foundation of Hubei Province (2015CFA001)the Fundamental Research Funds for the Central Universities (WUT: 2015-Ⅲ-034)Innovative Research Funds of SKLWUT (2015-ZD-1)~~
文摘Flower-like tin oxide-supported platinum(Pt/SnOx) with a hierarchical structure was synthesized by a hydrothermal method and characterized by XRD,SEM,TEM,high resolution TEM,XPS and nitrogen adsorption.The flower-like Pt/SnOx microspheres of 1 μm in diameter were composed of staggered petal-like nanosheets with a thickness of 20 nm.Pt nanoparticles(NPs) of 2-3 nm were well dispersed on the SnOx nanosheets.The catalyst was tested in the catalytic oxidation of gaseous formaldehyde(HCHO) at room temperature,and exhibited enhanced activity compared to Pt NPs supported on commercial SnO and ground SnOx.HCHO removal of 87%was achieved over the hierarchical Pt/SnOx after 1 h of reaction,which was 1.5 times that over the ground SnOx-supported Pt(Pt/g-SnOx),and the high activity was maintained after six recycles,showing the high stability of this catalyst.HCHO decomposition kinetics was modeled as a second order reaction.The reaction rate constant for Pt/SnOx was 5.6 times higher than Pt/g-SnOx.The hierarchical pore structure was beneficial for the diffusion and adsorption of HCHO molecules,and the highly dispersed Pt NPs on the SnOx nanosheets were the active sites for the oxidative decomposition of HCHO into CO2 and H2O.This study provided a promising approach for designing efficient catalysts for indoor HCHO removal at ambient temperature.
基金supported by the National Natural Science Foundation of China (21573031, 21373038)the Program for Excellent Talents in Dalian City (2016RD09)the Doctoral Scientific Research Foundation of Liao Ning Province (20170520395)~~
文摘Zr‐Al mixed oxide supported Pt catalysts with different Zr/Al mole ratios(2.5%Pt/ZrxAl(1–x)Oy) were synthesized by an impregnation method and used for the selective hydrogenolysis of glycerol to n‐propanol in an autoclave reactor. The catalysts were fully characterized by X‐ray powder diffrac‐tion, Brunauer‐Emmett‐Teller surface area analysis, CO chemisorption, H2 temperature‐ pro‐grammed reduction, pyridine‐infrared spectroscopy, and NH3‐temperature‐programmed desorp‐tion. The results revealed that the Zr/Al ratio on the support significantly affected the size of the platinum particles and the properties of the acid sites on the catalysts. The catalytic performance was well correlated with the acidic properties of the catalyst; specifically, more acid sites contrib‐uted to the conversion and strong acid sites with a specific intensity contributed to the deep dehy‐dration of glycerol to form n‐propanol. Among the tested catalysts, 2.5 wt% Pt/Zr(0.7)Al(0.3)Oy exhibited excellent selectivity for n‐propanol with 81.2% glycerol conversion at 240 °C and 6.0 MPa H2 pres‐sure when 10% aqueous glycerol solution was used as the substrate. In addition, the effect of vari‐ous reaction parameters, such as H2 content, reaction temperature, reaction time, and number of experimental cycles were studied to determine the optimized reaction conditions and to evaluate the stability of the catalyst.
基金Supported by National Natural Science Foundation of China(No.30470419)
文摘Objective:To explore the protective effect of sound preconditioning against ototoxicity induced by cisplatin and its possible mechanism with respect to the nitric oxide (NO) pathway. Methods: Albino guinea pigs were divided into silent control, CDDP,sound preconditioning and sound preconditioning+CDDP groups. The animals of the CDDP group were injected with cisplatin intravenously 8 mg/kg b.w. The animals in the sound preconditioning were exposed to white noise at 85dB SPL, 5h/d, for 10 d (sound preconditioning). The animals in the sound preconditioning+CDDP group were treated with sound preconditioning first and then administrated with cisplatin intravenously 8 mg/kg b.w. Hearing thresholds of auditory brainstem responses (ABRs) of all animals were measured to evaluate hearing function. Hair cell loss was estimated via surface preparation. Cochlear tissue was assayed for measurement of NO level and immunohistochemistry method was used for inducible nitric oxide synthase (iNOS) analysis. Results: There was no significant difference between the silent control and sound preconditioning animals with respect to either functional or histological measures. Among the animals in the CDDP group, there was a significant elevation of threshold at the high test frequencies after administration compared with the silent control group (P〈0. 05). Morphological examination showed that there was obvious loss of the OHC, especially in the third row of the basal turn. The NO level and immunoreactivity to iNOS in this group were higher and more intensive than those of the silent control group (P〈0. 05). The ABR thresholds in the sound preconditioning + CDDP group were much lower than those of the CDDP group (P〈0.05). Slight sporadic loss of OHC was found in this group. The immunoreactivity to iNOS and the level of NO in cochlea decreased significantly compared with the CDDP group (P〈 0. 05). Conclusion: It is suggested that sound preconditioning, to some extent, provides protective effect against ototoxicity of cisplatin. The excess synthesis of NO induced by the over-expressed of iNOS may be involved in the CDDP induced ototoxicity. The possible mechanism is related to suppression of the NO pathway.
基金supported by the Major National Scientific Research Plan (Grant Nos. 2011CB933203, 2011CB933102)National Natural Science Foundation of China (Grant Nos. 61036002, 60877035, 31070965)
文摘TiN, platinum (Pt) black and iridium oxide are introduced to the stimulating sites to improve the performance of the flexible electrode. Low temperature process is used to fabricate the modifying films. TiN is coated on the gold sites by magnetron sputtering while platinum black and iridium oxide are coated by electroplating and electrodeposifion, respectively. The impedance of the electrode decreases dramatically after modification. The combined analysis of surface morphology and cyclic voltammograms (CV) in phosphate buffer saline (PBS) solution indicates that the modified electrode sites have larger electrode-electrolyte capacitance and smaller faradic resistance than unmodified sites, thus they have smaller electrochemical impedances.
基金financially supported by the National Basic Research Program of China (973 Program, 2012CB215500, 2012CB720300)the National Natural Science Foundation of China (51072239, 20936008)the Fundamental Research Funds for the Central Universities (CDJZR-12228802)
文摘Pt is a catalyst in proton exchange membrane fuel cell (PEMFC), and its activity will be degraded in the air due to the exist- ence of SOx impurities. On strategy is introducing of Mo into the Pt catalyst because it can improve the SOx-tolerance capacity. Based on the aforementioned phenomenon, a density function theory (DFT) study on SOx adsorbed on Pt(111) and PtMo(111) was performed to enhance Pt catalytic activity. The adsorption energy of adsorbed species, the net change, partial density of state (PDOS), and d-band center were calculated and analyzed comparatively. The results show that the presence of Mo-atom weakens the S-Pt bond strength and reduces the adsorption energies for SO2, S and SO3 on PtMo(111). Moreover, the Mo atom weakens the effects of SO2 on the PtMo(lll) electronic structure and makes the catalyst maintains its original electronic structure after SO2 adsorption as compared with Pt(111).
基金the National Natural Science Foundation of China(91227202,21222403)
文摘The aim of this review article is to introduce recent studies on an emergent class of singlet oxygen photosensitizers of potential applications to the photodynamic therapy,with a primary focus on the cyclometalated transition-metal complexes.Singlet oxygen photosensitization performances of various cyclometalated Ir and Pt scaffolds are reviewed,and the general photophysical properties of relevant systems and the mechanisms of singlet oxygen production via photo-sensitization are also briefly discussed.Thus far,investigations of singlet oxygen sensitization by such Ir and Pt complexes are mainly carried out in organic solvents and under non-physiological conditions,while some research efforts have been made at examining the feasibility of applying pertinent cyclometalated complexes to photodynamic therapy.
基金supported by the National Basic Research Program of China(2013CB8345052013CB834804)+3 种基金the National Natural Science Foundation of China(213904049142730321402217)the Key Research Programme of the Chinese Academy of Sciences(KGZD-EW-T05)
文摘With visible light(λ=450 nm) irradiation of a catalytic amount of platinum(Ⅱ) terpyridyl complex, 1,3,5-triaryl-2-pyrazolines can be smoothly converted to their corresponding pyrazoles and hydrogen in quantitative yields with no use of any oxidant at room temperature.